第九章 动态规划part02
- 62.不同路径
/** * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类 * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1] * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可 * 4. 遍历顺序 一行一行遍历 * 5. 推导结果 。。。。。。。。 * * @param m * @param n * @return */ public static int uniquePaths(int m, int n) { int[][] dp = new int[m][n]; //初始化 for (int i = 0; i < m; i++) { dp[i][0] = 1; } for (int i = 0; i < n; i++) { dp[0][i] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i-1][j]+dp[i][j-1]; } } return dp[m-1][n-1]; }
思路:该题是动态规划的经典题目,关键是动态规划五部曲的应用,首先要确定dp数组和其含义,确定递推公式,初始化dp数组,确定遍历顺序,最后举例推导dp数组。
- 63. 不同路径 II
class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int m = obstacleGrid.length; int n = obstacleGrid[0].length; int[][] dp = new int[m][n]; //如果在起点或终点出现了障碍,直接返回0 if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) { return 0; } for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) { dp[i][0] = 1; } for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) { dp[0][j] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0; } } return dp[m - 1][n - 1]; } }
思路:注意!第一行和第一列,只要出现障碍,后边的dp数组都为0;因为第一行和第一列都是由前面走出来的,只要前面出现了障碍,后面都走不通。如果起点或者终点出现了障碍,直接返回0。