计算机设计大赛 深度学习 python opencv 火焰检测识别

news2024/12/29 14:44:18

文章目录

  • 0 前言
  • 1 基于YOLO的火焰检测与识别
  • 2 课题背景
  • 3 卷积神经网络
    • 3.1 卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 数据集准备
    • 5.1 数据标注简介
    • 5.2 数据保存
  • 6 模型训练
    • 6.1 修改数据配置文件
    • 6.2 修改模型配置文件
    • 6.3 开始训练模型
  • 7 实现效果
    • 7.1图片效果
    • 7.2 视频效果
    • 7.3 摄像头实时效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的火焰识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 基于YOLO的火焰检测与识别

学长设计系统实现效果如下,精度不错!

在这里插入图片描述

在这里插入图片描述

2 课题背景

火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

3.1 卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
          stride = None  # strides computed during build
          onnx_dynamic = False  # ONNX export parameter
            
          def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
              super().__init__()
              self.nc = nc  # number of classes
              self.no = nc + 5  # number of outputs per anchor
              self.nl = len(anchors)  # number of detection layers
              self.na = len(anchors[0]) // 2  # number of anchors
              self.grid = [torch.zeros(1)] * self.nl  # init grid
              self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
              self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
              self.inplace = inplace  # use in-place ops (e.g. slice assignment)
            
          def forward(self, x):
              z = []  # inference output
              for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                  bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                  x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            
    
                  if not self.training:  # inference
                      if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                          self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
            
                      y = x[i].sigmoid()
                      if self.inplace:
                          y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                      else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                          wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                      z.append(y.view(bs, -1, self.no))
            
              return x if self.training else (torch.cat(z, 1), x)
    
          def _make_grid(self, nx=20, ny=20, i=0):
              d = self.anchors[i].device
              if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
              else:
                  yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
              grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
              anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                  .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
              return grid, anchor_grid
    
    
    

5 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

5.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

5.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

6 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

6.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,我这里是识别有无火焰,所以这里填写2;最后箭头4中填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

6.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

6.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

7 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI



    #部分代码
    from PyQt5 import QtCore, QtGui, QtWidgets


    class Ui_Win_mask(object):
        def setupUi(self, Win_mask):
            Win_mask.setObjectName("Win_mask")
            Win_mask.resize(1107, 868)
            Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
    "ui.pushButton->setStyleSheet(qstrStylesheet);")
            self.frame = QtWidgets.QFrame(Win_mask)
            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
            self.frame.setObjectName("frame")
            self.pushButton = QtWidgets.QPushButton(self.frame)
            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton.setFont(font)
            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.frame)
            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton_2.setFont(font)
            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.frame)
            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
            QtCore.QMetaObject.connectSlotsByName(Win_mask)



7.1图片效果

在这里插入图片描述

7.2 视频效果

在这里插入图片描述

7.3 摄像头实时效果

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1430310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nba2k24 灌篮高手Q版流川枫面补

nba2k24 灌篮高手Q版流川枫面补 此面补nba2k23-nba2k24通用 下载地址: https://www.changyouzuhao.cn/9979.html

利用VPN设备漏洞入侵!新型勒索软件CACTUS攻击手法分析

近期,亚信安全应急响应中心截获了利用VPN设备已知漏洞传播的新型勒索软件CACTUS,该勒索于2023年3月首次被发现,一直保持着活跃状态。CACTUS勒索软件通过Fortinet VPN的已知漏洞进行入侵(黑客首先获取到VPN账号,再通过V…

20240130在ubuntu20.04.6下卸载NVIDIA显卡的驱动

20240130在ubuntu20.04.6下卸载NVIDIA显卡的驱动 2024/1/30 12:58 缘起,为了在ubuntu20.4.6下使用whisper,以前用的是GTX1080M,装了535的驱动。 现在在PDD拼多多上了入手了一张二手的GTX1080,需要将安装最新的545的驱动程序&#…

ctfshow web-77

开启环境: 先直接用伪协议获取 flag 位置。 c?><?php $anew DirectoryIterator("glob:///*"); foreach($a as $f) {echo($f->__toString(). );} exit(0); ?> 发现 flag36x.txt 文件。同时根目录下还有 readflag&#xff0c;估计需要调用 readflag 获…

图灵之旅--ArrayList顺序表LinkedList链表栈Stack队列Queue

目录 线性表顺序表ArrayList简介ArrayList使用ArrayList的构造ArrayList常见操作ArrayList的遍历ArrayList的扩容机制利用ArrayList洗牌ArrayList的优缺点 链表链表的实现双向链表的实现 LinkedListLinkedList引入LinkedList的使用LinkedList的构造LinkedList的常用方法介绍Lin…

五、图像像素算术操作

算术操作无非就是像数值之间的加减乘除操作 一、创建图像像素算术操作——头文件 在项目的头文件中&#xff0c;右击添加&#xff0c;新建项 创建用于图像像素算术操作的头文件&#xff0c;我这边是operater.h 该头文件声明了一个Operater类(class Operater)&#xff0c;该…

ConcurrentModificationException异常原因,解决方法,线程安全的单例模式

异常简介 ConcurrentModificationException&#xff08;并发修改异常&#xff09;是基于java集合中的 快速失败&#xff08;fail-fast&#xff09; 机制产生的&#xff0c;在使用迭代器遍历一个集合对象时&#xff0c;如果遍历过程中对集合对象的内容进行了增删改&#xff0c;…

2023年度总结 | 关于意义,爱与回望——写给清醒又无知的20岁

Hi&#xff0c;大家好&#xff0c;我是半亩花海&#xff0c;一名再普通不过的大学生。2023年&#xff0c;20岁&#xff0c;充实而零乱的一年&#xff0c;清醒又无知的一年。年末&#xff0c;最近的一些事儿也让我逐渐地有感而发&#xff0c;心静&#xff0c;除杂&#xff0c;思…

2024年美国大学生数学建模比赛MCM问题B:搜索潜水器-思路解析与代码解答

2024 MCM Problem B Searching for Submersibles 一、题目翻译 背景&#xff1a; 总部位于希腊的小型海上巡航潜艇&#xff08;MCMS&#xff09;公司&#xff0c;制造能够将人类运送到海洋最深处的潜水器。潜水器被移动到该位置&#xff0c;并不受主船的束缚。MCMS现在希望用…

HTTP和HTTPS区别!

http 是我们几乎天天都要打交道的东西&#xff0c;相关知识点有点多&#xff0c;所以也有不少面试必问的点&#xff0c;这里做了一些整理&#xff0c;帮且大家树立完整的 http 知识体系&#xff0c;对面试官说 so easy HTTP 的特点和缺点 特点&#xff1a;无连接、无状态、灵…

【HarmonyOS应用开发】Web组件的使用(十三)

文章末尾含&#xff1a;Web组件抽奖案例&#xff08;ArkTS&#xff09;-示例源码下载 Web组件的使用 一、概述 相信大家都遇到过这样的场景&#xff0c;有时候我们点击应用的页面&#xff0c;会跳转到一个类似浏览器加载的页面&#xff0c;加载完成后&#xff0c;才显示这个页…

vivado 运行编译

运行合成 运行定义并配置在合成过程中使用的设计方面。一个合成run定义了以下内容&#xff1a; •AMD设备在合成过程中成为目标 •要应用的约束集 •启动单个或多个合成运行的选项 •控制合成引擎结果的选项 要定义RTL源文件和约束的运行&#xff0c;请执行以下操作&…

Java 数据结构 二叉树(二)红黑树

目录 数据结构图-树 简介 规则 旋转 重新着色 红黑树构建过程 前言-与正文无关 生活远不止眼前的苦劳与奔波&#xff0c;它还充满了无数值得我们去体验和珍惜的美好事物。在这个快节奏的世界中&#xff0c;我们往往容易陷入工作的漩涡&#xff0c;忘记了停下脚步&#xf…

关于华为应用市场上架,申请权限未告知目的被驳回问题的简单处理方式

关于华为应用市场上架过程中出现的【您的应用在运行时&#xff0c;未同步告知权限申请的使用目的&#xff0c;向用户索取&#xff08;存储、拍照&#xff09;等权限&#xff0c;不符合华为应用市场审核标准。】 使用方式&#xff1a; 1、引入 import permision from "/m…

配置实例—交换机VLAN聚合配置实例

一、组网需求 某公司拥有多个部门且位于同一网段&#xff0c;为了提升业务安全性&#xff0c;将不同部门的用户划分到不同VLAN中。现由于业务需要&#xff0c;不同部门间的用户需要互通。如图1所示&#xff0c;VLAN2和VLAN3为不同部门&#xff0c;现需要实现不同VLAN间的用户可…

【MySQL】学习如何通过DQL进行数据库数据的基本查询

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-KvH5jXnPNsRtMkOC {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

Java学习day28:线程池Pool(知识点非常非常的详解)

声明&#xff1a;该专栏本人重新过一遍java知识点时候的笔记汇总&#xff0c;主要是每天的知识点题解&#xff0c;算是让自己巩固复习&#xff0c;也希望能给初学的朋友们一点帮助&#xff0c;大佬们不喜勿喷(抱拳了老铁&#xff01;) 往期回顾 Java学习day27&#xff1a;join方…

YOLOv5算法进阶改进(15)— 引入密集连接卷积网络DenseNet

前言:Hello大家好,我是小哥谈。DenseNet(密集连接卷积网络)是一种深度学习神经网络架构,它在2017年由Gao Huang等人提出。DenseNet的核心思想是通过密集连接(dense connection)来促进信息的流动和共享。在传统的卷积神经网络中,每个层的输入只来自于前一层的输出。而在…

c语言---操作符(详解)

目录 一、操作符的分类二、算术操作符三、 移位操作符3.1<<左移操作符3.1.1移位规则3.1.2直接上代码以及解释 3.2>> 右移操作符3.2.1移位规则3.2.2画图解释 3.3注意 四、位操作符&#xff1a;&、|、^、~4.1&按位与4.1.1按位与的计算逻辑4.1.2代码4.1.3运行…

Modbus协议学习第七篇之libmodbus库API介绍(modbus_write_bits等)

写在前面 在第六篇中我们介绍了基于libmodbus库的演示代码&#xff0c;那本篇博客就详细介绍一下第六篇的代码中使用的基于该库的API函数。另各位读者&#xff0c;Modbus相关知识受众较少&#xff0c;如果觉得我的专栏文章有帮助&#xff0c;请一定点个赞&#xff0c;在此跪谢&…