C语言——P/文件操作

news2024/11/14 23:35:07

一、为什么使用文件?

如果没有⽂件,我们写的程序的数据是存储在电脑的内存中,如果程序退出,内存回收,数据就丢失了,等再次运⾏程序,是看不到上次程序的数据的,如果要将数据进⾏持久化的保存,我们可以使⽤⽂件。

二、什么是文件?

磁盘上的⽂件是⽂件。但是在程序设计中,我们⼀般谈的⽂件有两种:程序⽂件、数据⽂件(从⽂件功能的⻆度来分类的)。

1、程序⽂件
程序⽂件包括源程序⽂件(后缀为.c),⽬标⽂件(windows环境后缀为.obj),可执⾏程(windows环境后缀为.exe)。

2、数据⽂件
⽂件的内容不⼀定是程序,⽽是程序运⾏时读写的数据,⽐如程序运⾏需要从中读取数据的⽂件,或者输出内容的⽂件。本章讨论的是数据⽂件。
在以前各章所处理数据的输⼊输出都是以终端为对象的,即从终端的键盘输⼊数据,运⾏结果显⽰到显⽰器上。
其实有时候我们会把信息输出到磁盘上,当需要的时候再从磁盘上把数据读取到内存中使⽤,这⾥处理的就是磁盘上⽂件。

3、⽂件名

⼀个⽂件要有⼀个唯⼀的⽂件标识,以便⽤⼾识别和引⽤。
⽂件名包含3部分:⽂件路径+⽂件名主⼲+⽂件后缀
例如: c:\code\test.txt
为了⽅便起⻅,⽂件标识常被称为⽂件名。

三、⼆进制文件和文本文件?

根据数据的组织形式,数据⽂件被称为⽂本⽂件或者⼆进制⽂件。
数据在内存中以⼆进制的形式存储,如果不加转换的输出到外存,就是⼆进制⽂件。
如果要求在外存上以ASCII码的形式存储,则需要在存储前转换。以ASCII字符的形式存储的⽂件就是⽂本⽂件。
⼀个数据在内存中是怎么存储的呢?
字符⼀律以ASCII形式存储,数值型数据既可以⽤ASCII形式存储,也可以使⽤⼆进制形式存储。
如有整数10000,如果以ASCII码的形式输出到磁盘,则磁盘中占⽤5个字节(每个字符⼀个字节),⽽⼆进制形式输出,则在磁盘上只占4个字节(VS2019测试)。

#include <stdio.h>
int main()
{
	int a = 10000;
	FILE* pf = fopen("test.txt", "wb");
	fwrite(&a, 4, 1, pf);//⼆进制的形式写到⽂件中
	fclose(pf);
	pf = NULL;
	return 0;
}

图:


四、文件的打开和关闭

1、流和标准流

4.1.1 流

我们程序的数据需要输出到各种外部设备,也需要从外部设备获取数据,不同的外部设备的输⼊输出操作各不相同,为了⽅便程序员对各种设备进⾏⽅便的操作,我们抽象出了流的概念,我们可以把流想象成流淌着字符的河。
C程序针对⽂件、画⾯、键盘等的数据输⼊输出操作都是通过流操作的。
⼀般情况下,我们要想向流⾥写数据,或者从流中读取数据,都是要打开流,然后操作。

4.1.2 标准流

那为什么我们从键盘输⼊数据,向屏幕上输出数据,并没有打开流呢?
那是因为C语⾔程序在启动的时候,默认打开了3个流:
• stdin-标准输⼊流,在⼤多数的环境中从键盘输⼊,scanf函数就是从标准输⼊流中读取数据。
• stdout-标准输出流,⼤多数的环境中输出⾄显⽰器界⾯,printf函数就是将信息输出到标准输出
流中。
• stderr-标准错误流,⼤多数环境中输出到显⽰器界⾯。
这是默认打开了这三个流,我们使⽤scanf、printf等函数就可以直接进⾏输⼊输出操作的。
stdin、stdout、stderr三个流的类型是: FILE* ,通常称为⽂件指针。
C语⾔中,就是通过 FILE* 的⽂件指针来维护流的各种操作的。

2、文件指针

缓冲⽂件系统中,关键的概念是“⽂件类型指针”,简称“⽂件指针”。
每个被使⽤的⽂件都在内存中开辟了⼀个相应的⽂件信息区,⽤来存放⽂件的相关信息(如⽂件的名字,⽂件状态及⽂件当前的位置等)。这些信息是保存在⼀个结构体变量中的。该结构体类型是由系统声明的,取名FILE.
例如,VS2013编译环境提供的 stdio.h 头⽂件中有以下的⽂件类型申明:


struct _iobuf {
	char* _ptr;
	int _cnt;
	char* _base;
	int _flag;
	int _file;
	int _charbuf;
	int _bufsiz;
	char* _tmpfname;
};
typedef struct _iobuf FILE;

不同的C编译器的FILE类型包含的内容不完全相同,但是⼤同⼩异。
每当打开⼀个⽂件的时候,系统会根据⽂件的情况⾃动创建⼀个FILE结构的变量,并填充其中的信
息,使⽤者不必关⼼细节。
⼀般都是通过⼀个FILE的指针来维护这个FILE结构的变量,这样使⽤起来更加⽅便。
下⾯我们可以创建⼀个FILE*的指针变量:

FILE* pf;//⽂件指针变量

定义pf是⼀个指向FILE类型数据的指针变量。可以使pf指向某个⽂件的⽂件信息区(是⼀个结构体变量)。通过该⽂件信息区中的信息就能够访问该⽂件。也就是说,通过⽂件指针变量能够间接找到与它关联的⽂件。
⽐如:
 

3、文件的打开和关闭

⽂件在读写之前应该先打开⽂件,在使⽤结束之后应该关闭⽂件。在编写程序的时候,在打开⽂件的同时,都会返回⼀个FILE*的指针变量指向该⽂件,也相当于建⽴了指针和⽂件的关系。
ANSIC规定使⽤ fopen 函数来打开⽂件, fclose 来关闭⽂件。

/打开⽂件
FILE * fopen ( const char * filename, const char * mode );
//关闭⽂件
int fclose ( FILE * stream );
/* fopen fclose example */
#include <stdio.h>
int main()
{
	FILE* pFile;
	//打开⽂件
	pFile = fopen("myfile.txt", "w");
	//⽂件操作
	if (pFile != NULL)
	{
		fputs("fopen example", pFile);
		//关闭⽂件
		fclose(pFile);
	}
	return 0;
}


五、文件的顺序读写

1、顺序读写函数介绍
 

上⾯说的适⽤于所有输⼊流⼀般指适⽤于标准输⼊流和其他输⼊流(如⽂件输⼊流);所有输出流⼀般指适⽤于标准输出流和其他输出流(如⽂件输出流)
 

2、对⽐⼀组函数:
scanf/fscanf/sscanf
printf/fprintf/sprintf
 


六、文件的随机读写

1、fseek

根据⽂件指针的位置和偏移量来定位⽂件指针。

int fseek ( FILE * stream, long int offset, int origin );
/* fseek example */
#include <stdio.h>
int main()
{
	FILE* pFile;
	pFile = fopen("example.txt", "wb");
	fputs("This is an apple.", pFile);
	fseek(pFile, 9, SEEK_SET);
	fputs(" sam", pFile);
	fclose(pFile);
	return 0;
}

2、ftell

返回⽂件指针相对于起始位置的偏移量
 

long int ftell ( FILE * stream );
/* ftell example : getting size of a file */
#include <stdio.h>
int main()
{
	FILE* pFile;
	long size;
	pFile = fopen("myfile.txt", "rb");
	if (pFile == NULL)
		perror("Error opening file");
	else
	{
		fseek(pFile, 0, SEEK_END); // non-portable
		size = ftell(pFile);
		fclose(pFile);
		printf("Size of myfile.txt: %ld bytes.\n", size);
	}
	return 0;
}

3、rewind

让⽂件指针的位置回到⽂件的起始位置

 void rewind ( FILE * stream );
/* rewind example */
#include <stdio.h>
int main()
{
	int n;
	FILE* pFile;
	char buffer[27];
	pFile = fopen("myfile.txt", "w+");
	for (n = 'A'; n <= 'Z'; n++)
		fputc(n, pFile);
	rewind(pFile);
	fread(buffer, 1, 26, pFile);
	fclose(pFile);
	buffer[26] = '\0';
	printf(buffer);
	return 0;
}

七、文件读取结束的判定

1、被错误使⽤的 feof

牢记:在⽂件读取过程中,不能⽤feof函数的返回值直接来判断⽂件的是否结束。
feof 的作⽤是:当⽂件读取结束的时候,判断是读取结束的原因是否是:遇到⽂件尾结束。

7.1.1. ⽂本⽂件读取是否结束,判断返回值是否为 EOF ( fgetc ),或者 NULL ( fgets )
例如:
• fgetc 判断是否为 EOF .
• fgets 判断返回值是否为 NULL .

7.1.2. ⼆进制⽂件的读取结束判断,判断返回值是否⼩于实际要读的个数。
例如:
• fread判断返回值是否⼩于实际要读的个数

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
	int c; // 注意:int,⾮char,要求处理EOF
	FILE* fp = fopen("test.txt", "r");
	if (!fp) {
		perror("File opening failed");
		return EXIT_FAILURE;
	}
	//fgetc 当读取失败的时候或者遇到⽂件结束的时候,都会返回EOF
	while ((c = fgetc(fp)) != EOF) // 标准C I/O读取⽂件循环
	{
		putchar(c);
	}
	//判断是什么原因结束的
	if (ferror(fp))
		puts("I/O error when reading");
	else if (feof(fp))
		puts("End of file reached successfully");
	fclose(fp);
}

⼆进制⽂件的例⼦:
 

#include <stdio.h>
enum { SIZE = 5 };
int main(void)
{
	double a[SIZE] = { 1.,2.,3.,4.,5. };
	FILE* fp = fopen("test.bin", "wb"); // 必须⽤⼆进制模式
	fwrite(a, sizeof * a, SIZE, fp); // 写 double 的数组
	fclose(fp);
	double b[SIZE];
	fp = fopen("test.bin", "rb");
	size_t ret_code = fread(b, sizeof * b, SIZE, fp); // 读 double 的数组
	if (ret_code == SIZE) {
		puts("Array read successfully, contents: ");
		for (int n = 0; n < SIZE; ++n) printf("%f ", b[n]);
		putchar('\n');
	}
	else { // error handling
		if (feof(fp))
			printf("Error reading test.bin: unexpected end of file\n");
		else if (ferror(fp)) {
			perror("Error reading test.bin");
		}
	}
	fclose(fp);
}


八、文件缓冲区

ANSIC标准采⽤“缓冲⽂件系统”处理的数据⽂件的,所谓缓冲⽂件系统是指系统⾃动地在内存中为程序中每⼀个正在使⽤的⽂件开辟⼀块“⽂件缓冲区”。从内存向磁盘输出数据会先送到内存中的缓冲区,装满缓冲区后才⼀起送到磁盘上。如果从磁盘向计算机读⼊数据,则从磁盘⽂件中读取数据输⼊到内存缓冲区(充满缓冲区),然后再从缓冲区逐个地将数据送到程序数据区(程序变量等)。缓冲区的⼤⼩根据C编译系统决定的

#include <stdio.h>
#include <windows.h>
//VS2019 WIN11环境测试
int main()
{
	FILE* pf = fopen("test.txt", "w");
	fputs("abcdef", pf);//先将代码放在输出缓冲区
	printf("睡眠10秒-已经写数据了,打开test.txt⽂件,发现⽂件没有内容\n");
	Sleep(10000);
	printf("刷新缓冲区\n");
	fflush(pf);//刷新缓冲区时,才将输出缓冲区的数据写到⽂件(磁盘)
	//注:fflush 在⾼版本的VS上不能使⽤了
	printf("再睡眠10秒-此时,再次打开test.txt⽂件,⽂件有内容了\n");
	Sleep(10000);
	fclose(pf);
	//注:fclose在关闭⽂件的时候,也会刷新缓冲区
	pf = NULL;
	return 0;
}

这⾥可以得出⼀个结论:
因为有缓冲区的存在,C语⾔在操作⽂件的时候,需要做刷新缓冲区或者在⽂件操作结束的时候关闭⽂件。
如果不做,可能导致读写⽂件的问题。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1429785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构—基础知识:哈夫曼树

文章目录 数据结构—基础知识&#xff1a;哈夫曼树哈夫曼树的基本概念哈夫曼树的构造算法哈夫曼树的构造过程哈夫曼算法的实现算法&#xff1a;构造哈夫曼树 数据结构—基础知识&#xff1a;哈夫曼树 哈夫曼树的基本概念 哈夫曼&#xff08;Huffman&#xff09;树又称最优树&…

gtest测试框架

文章目录 前言1 单元测试2 gtest安装3 gtest原理4 断言4.1 明确指定或失败4.2 布尔条件4.3 二元比较4.4 谓词断言4.5 死亡测试5 gtest使用5.1 测试函数5.2 测试类5.3 测试夹具5.4 类型参数化5.5 事件总结前言 GoogleTest(GTest) 是谷歌开源的 C++ 单元测试框架。 1 单元测试…

redis存储对象的过期设置在实际项目中的运用案例展示

redis存储对象的过期设置在实际项目中的运用案例展示&#xff01;经过前面的学习&#xff0c;我们已经基本上初步掌握了redis数据库存储对象的过期时间是如何设置的了。下面给大家展示一个具体的实际开发项目中用到业务场景。 在项目化生寺小程序游戏开发中&#xff0c;有道具&…

什么是TCP粘包和半包问题?如何解决?

什么是TCP粘包问题&#xff1f;如何解决&#xff1f; TCP粘包和半包是数据传输中比较常见的问题。所谓的粘包问题就是指在数据传输的时候&#xff0c;在一条消息中读取到了另一条消息的部分数据&#xff0c;如下图&#xff1a; 半包是指接收端只收到了部分的数据&#xff0c;而…

【C语言/基础梳理/期末复习】动态内存管理(附思维导图)

目录 一、为什么要有动态内存分配 &#xff08;1&#xff09;我们已经掌握的内存方式的特点 &#xff08;2&#xff09;需求 二、malloc和free 2.1.malloc 2.1.1函数原型 2.1.2函数使用 2.1.3应用示例​编辑 2.2free 2.2.1函数原型 2.2.2函数使用 三、calloc和reallo…

算法练习-左叶子之和(思路+流程图+代码)

难度参考 难度&#xff1a;中等 分类&#xff1a;二叉树 难度与分类由我所参与的培训课程提供&#xff0c;但需要注意的是&#xff0c;难度与分类仅供参考。且所在课程未提供测试平台&#xff0c;故实现代码主要为自行测试的那种&#xff0c;以下内容均为个人笔记&#xff0c;旨…

rust gui开发框架选择

作为一个系统编程强大语言&#xff0c;怎么能少得了图形界面的开发 实际上写这篇前我也不知道&#xff0c;于是我问了ai大模型&#xff0c;文心3.5和chatgpt4.0 答案实际上不能满意&#xff0c;最后我做了下筛选 参考博文&#xff1a; rust开发环境配置&#xff1a;链接 一、…

Loadbalancer如何优雅分担服务负荷

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Loadbalancer如何优雅分担服务负荷 前言Loadbalancer基础&#xff1a;数字世界的分配大师1. 分发请求&#xff1a;2. 健康检查&#xff1a;3. 会话保持&#xff1a;4. 可伸缩性&#xff1a;5. 负载均衡…

数据结构—基础知识:哈夫曼编码

文章目录 数据结构—基础知识&#xff1a;哈夫曼编码哈夫曼编码的主要思想有关编码的概念哈夫曼编码满足两个性质&#xff1a; 数据结构—基础知识&#xff1a;哈夫曼编码 哈夫曼编码的主要思想 在进行数据压缩时&#xff0c;为了使压缩后的数据文件尽可能短&#xff0c;可采…

二手电脑配置给你不一样的成就感

回顾从小到大使用电脑、组装电脑到开发软硬件的经历&#xff0c;总是对二手电脑有着不一样的情感&#xff0c;近五年买过八台新电脑&#xff0c;一台是图像处理培训买的笔记本&#xff0c;一台是小孩上课的台式机&#xff0c;一台是老人的集成办卡电脑&#xff0c;还有一些工作…

Vue3_基础使用_2

这节主要介绍&#xff1a;标签和组件的ref属性&#xff0c;父子组件间的传递值&#xff0c;ts的接口定义&#xff0c;vue3的生命周期 1.标签的ref属性。 1.1ref属性就是给标签打标识用的&#xff0c;相当于html的id&#xff0c;但是在vue3中用id可能会乱&#xff0c;下面是ref…

跟着cherno手搓游戏引擎【18】抽象Shader、项目小修改

抽象&#xff1a; Shader.h: #pragma once #include <string>namespace YOTO {class Shader {public:virtual~Shader()default;virtual void Bind()const0;virtual void UnBind()const0;static Shader* Create(const std::string& vertexSrc, const std::string&am…

软考高项-机考相关介绍论文写作基础介绍

机考相关 初、中级(信息处理技术员除外)资格:基础知识和应用技术2个科目连考,基础知识科目最短作答时长90分钟,最长作答时长120分钟,2个科目作答总时长240分钟,考试结束前60分钟可交卷离场 历年论文考题

java数据结构与算法刷题-----LeetCode15. 三数之和

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 解题思路 和LeetCode1.两数之和一样&#xff0c;但是这道题边界条件更多。…

Flutter 各种Demo效果合集

Flutter 各种Demo实现效果&#xff1a; github&#xff1a;GitHub - PangHaHa12138/FlutterDemo: Flutter 各种Demo效果合集 1&#xff1a;2种 仿朋友圈 效果,顶部拉伸 和 不拉伸 2&#xff1a;仿抖音上下滑动视频播放 3&#xff1a;视频直播&#xff08;使用的电视台的m3u…

云计算基础(云计算概述)

目录 一、云计算概述 1.1 云计算的概念 1.1.1 云计算解决的问题 1.1.2 云计算的概念 1.1.3 云计算的组成 1.2 云计算主要特征 1.2.1 按需自助服务 1.2.2 泛在接入 1.2.3 资源池化 1.2.4 快速伸缩性 1.2.5 服务可度量 1.3 云计算服务模式 1.3.1 软件即服务(Softwar…

C#验证字符串是否包含汉字:用正则表达式 vs 用ASCII码 vs 用汉字的 Unicode 编码

目录 一、使用的方法 1.使用正则表达式验证字符串 2.使用正则表达式验证字符 3.用ASCII码判断 4.用汉字的 Unicode 编码范围判断 二、实例 1.源码 2.生成效果 验证一个字符串是否是纯汉字或者包含有汉字的前提&#xff0c;是VS编辑器的默认编码格式设置为&#xff1a;选…

Vite与Webpack打包内存溢出问题优雅处理方式

Vite与Webpack打包内存溢出问题处理 文章目录 Vite与Webpack打包内存溢出问题处理1. Vite1. 打包错误提示2. 命令行方式解决3. 配置环境变量方式解决1. 设置变量2. 配置系统的环境变量 2. Webpack1. 打包错误提示2. 命令行方式解决3. 配置环境变量方式解决1. 设置变量2. 配置系…

Llama2大模型开源,大模型的Android时代来了?

就昨天凌晨,微软和Meta宣布Llama2大模型开源且进一步放开商用,一下朋友圈刷屏。要知道,开源界最强大的模型就是过去Meta开源的Llama,而现在Llama2更强大,又开放商用,更有微软大模型霸主企业撑腰(微软既投资大模型界的IOS——ChatGPT,又联合发布大模型的Android——Llam…

旧衣物回收小程序开发,互联网模式下的营收有多大?

在当下快节奏的生活中&#xff0c;人们不仅生活水平在提高&#xff0c;消费水平也在逐渐提高&#xff0c;从而导致了闲置衣物的增加。为了减少浪费&#xff0c;旧衣服回收行业受到了大众的广泛关注&#xff0c;成为循环利用的一大方式。 当然&#xff0c;在当下网络时代&#…