【机器学习】科学库使用手册第2篇:机器学习任务和工作流程(已分享,附代码)

news2024/11/18 9:21:45

本系列文章md笔记(已分享)主要讨论人工智能相关知识。主要内容包括,了解机器学习定义以及应用场景,掌握机器学习基础环境的安装和使用,掌握利用常用的科学计算库对数据进行展示、分析,学会使用jupyter notebook平台完成代码编写运行,应用Matplotlib的基本功能实现图形显示,应用Matplotlib实现多图显示,应用Matplotlib实现不同画图种类,学习Numpy运算速度上的优势,知道Numpy的数组内存块风格,了解Numpy与Pandas的不同,学习Pandas的使用,应用crosstab和pivot_table实现交叉表与透视表,应用Pandas实现数据的读取和存储,并且了解完整机器学习项目的流程。

全套笔记和代码自取在个人博客: https://www.666mao.com/sku?skuId=4

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,33 子模块

机器学习概述

学习目标

  • 了解人工智能发展历程
  • 了解机器学习定义以及应用场景
  • 知道机器学习算法监督学习与无监督学习的区别
  • 知道监督学习中的分类、回归特点
  • 知道机器学习的开发流程

1.3 人工智能主要分支

学习目标

  • 了解人工智能的主要分支

1 主要分支介绍

通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:

  • 计算机视觉(CV)、

  • 自然语言处理(NLP)

    • 在 NLP 领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。
  • 机器人

1.1 分支一:计算机视觉

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。

当前阶段:

计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面)。

发展历史:

image-20190218130007824

1.2 分支二:语音识别

语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。

当前阶段:

语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了。

语音识别领域仍然面临着声纹识别和**「鸡尾酒会效应」**等一些特殊情况的难题。

现代语音识别系统严重依赖于云,在离线时可能就无法取得理想的工作效果。

发展历史:

  • 百度语音识别:
    • 距离小于1米,中文字准率97%+
    • 支持耳语、长语音、中英文混合及方言

image-20190218125823637

1.3 分支三:文本挖掘/分类

**这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。**其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

当前阶段:

我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。

文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。

发展历史:

1.4 分支四:机器翻译

机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。

当前阶段:

机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进入社会影响阶段。

在某些情况下,俚语和行话等内容的翻译会比较困难(受限词表问题)。

专业领域的机器翻译(比如医疗领域)表现通常不好

发展历史:

1.5 分支五:机器人

机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。

**机器人可以分成两大类:固定机器人和移动机器人。**固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。

当前阶段:

自上世纪「Robot」一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在 20 世纪 80 年代将这一领域带入了应用阶段。在安川电机、Fanuc、ABB、库卡等公司的努力下,我们认为进入 21 世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。

但是,法律法规和「机器人威胁论」可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资

发展历史

总的来说,人工智能领域的研究前沿正逐渐从搜索、知识和推理领域转向机器学习、深度学习、计算机视觉和机器人领域。

大多数早期技术至少已经处于应用阶段了,而且其中一些已经显现出了社会影响力。一些新开发的技术可能仍处于工程甚至研究阶段,但是我们可以看到不同阶段之间转移的速度变得越来越快。

2 小结

  • 人工智能主要分支【了解】

    • 计算机视觉
    • 语音识别
    • 文本挖掘/分类
    • 机器翻译
    • 机器人

1.4 机器学习工作流程

学习目标

  • 了解机器学习的定义
  • 知道机器学习的工作流程
  • 掌握获取到的数据集的特性

1 什么是机器学习

机器学习是从数据自动分析获得模型,并利用模型对未知数据进行预测。

image-20190222232402795

2 机器学习工作流程

  • 机器学习工作流程总结

    • 1.获取数据
    • 2.数据基本处理
    • 3.特征工程
    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤

2.1 获取到的数据集介绍

img

电影ç±"型分析

img

  • 数据简介

在数据集中一般:

  • 一行数据我们称为一个样本

  • 一列数据我们成为一个特征

  • 有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)

  • 数据类型构成:

    • 数据类型一:特征值+目标值(目标值是连续的和离散的)
    • 数据类型二:只有特征值,没有目标值
  • 数据分割:

    • 机器学习一般的数据集会划分为两个部分:

      • 训练数据:用于训练,构建模型
      • 测试数据:在模型检验时使用,用于评估模型是否有效
    • 划分比例:

      • 训练集:70% 80% 75%
      • 测试集:30% 20% 25%

2.2 数据基本处理

​ 即对数据进行缺失值、去除异常值等处理

2.3 特征工程

2.3.1什么是特征工程

特征工程是使用专业背景知识和技巧处理数据使得特征能在机器学习算法上发挥更好的作用的过程

  • 意义:会直接影响机器学习的效果
2.3.2 为什么需要特征工程(Feature Engineering)

机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ”

注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

2.3.3 特征工程包含内容
  • 特征提取
  • 特征预处理
  • 特征降维
2.3.4 各概念具体解释
  • 特征提取
    • 将任意数据(如文本或图像)转换为可用于机器学习的数字特征

image-20190222233231189

  • 特征预处理

    • 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

image-20190222233258027

  • 特征降维

    • 指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

image-20190222233316042

2.4 机器学习

选择合适的算法对模型进行训练(具体内容见1.5)

2.5 模型评估

对训练好的模型进行评估(具体内容见1.6)


拓展阅读:

完整机器学习项目的流程

3 小结

  • 机器学习定义【掌握】

    • 机器学习是从数据自动分析获得模型,并利用模型对未知数据进行预测
  • 机器学习工作流程总结【掌握】

    • 1.获取数据
    • 2.数据基本处理
    • 3.特征工程
    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤
  • 获取到的数据集介绍【掌握】

    • 数据集中一行数据一般称为一个样本,一列数据一般称为一个特征。

    • 数据集的构成:

      • 由特征值+目标值(部分数据集没有)构成
    • 为了模型的训练和测试,把数据集分为:

      • 训练数据(70%-80%)和测试数据(20%-30%)
  • 特征工程包含内容【了解】

    • 特征提取
    • 特征预处理
    • 特征降维
  • 3.特征工程

    • 4.机器学习(模型训练)
    • 5.模型评估
      • 结果达到要求,上线服务
      • 没有达到要求,重新上面步骤
  • 获取到的数据集介绍【掌握】

    • 数据集中一行数据一般称为一个样本,一列数据一般称为一个特征。

    • 数据集的构成:

      • 由特征值+目标值(部分数据集没有)构成
    • 为了模型的训练和测试,把数据集分为:

      • 训练数据(70%-80%)和测试数据(20%-30%)
  • 特征工程包含内容【了解】

    • 特征提取
    • 特征预处理
    • 特征降维

未完待续, 同学们请等待下一期

全套笔记和代码自取在个人博客: https://www.666mao.com/sku?skuId=4

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1428662.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Django响应式图像库django-pictures

什么是响应式图像? 响应式设计是指网页在不同尺寸的设备上都有良好的显示效果。响应式设计的网页图像,就是响应式图像。 django-pictures是使用现代代码(如 AVIF 和 WebP)的响应式跨浏览器图像库。 特点 使用 Picture 标签的响应…

微信小程序新手入门教程二:认识JSON配置文件

在上一篇我们介绍了微信小程序的注册和基本使用方式,并且写出了一个简单的页面,但是依然没有解释目录中的各种.json文件是做什么的。这篇我们就来认识一下各种JSON配置文件及其配置项。 一 认识JSON 首先先来认识一下JSON是什么。 JSON 指的是 JavaScri…

开源大数据集群部署(九)Ranger审计日志集成(solr)

作者:櫰木 1、下载solr安装包并解压包 tar -xzvf solr-8.11.2.gz cd solr-8.11.2 执行安装脚本 ./bin/install_solr_service.sh /opt/solr-8.11.2.tgz安装后,会在/etc/default/ 下生成solr.in.sh文件。 2、在rangeradmin下生成solr相关配置 cd /opt…

比瓴科技入围软件供应链安全赛道!为关键信息基础设施安全建设注入新动力

1月20日,中关村华安关键信息基础设施安全保护联盟会员大会暨关键信息基础设施安全保护论坛在北京成功举办,比瓴科技作为会员单位受邀出席。 本次论坛发布了《关键信息基础设施安全保护支撑能力白皮书(2023)》,比瓴科技…

C++进阶--C++11 lambda表达式

C进阶--C11 lambda表达式 一、lambda表达式的概念二、lambda表达式的语法2.1 lambda表达式语法格式2.2 lambda表达式捕获列表说明 三、lambda表达式交换两个数3.1 标准写法3.2 利用捕捉列表进行捕捉3.3 利用捕捉列表进行捕捉 四、lambda表达式的底层原理4.1 底层原理4.2 lambda…

flutter开发实战-Camera自定义相机拍照功能实现

flutter开发实战-Camera自定义相机拍照功能实现 一、前言 在项目中使用image_picker插件时候,在android设备上使用无法默认设置前置摄像头(暂时不清楚什么原因),由于项目默认需要使用前置摄像头,所以最终采用自定义…

完整的 HTTP 请求所经历的步骤及分布式事务解决方案

1. 对分布式事务的了解 分布式事务是企业集成中的一个技术难点,也是每一个分布式系统架构中都会涉及到的一个东西, 特别是在微服务架构中,几乎可以说是无法避免。 首先要搞清楚:ACID、CAP、BASE理论。 ACID 指数据库事务正确执行…

【Java程序设计】【C00207】基于(JavaWeb+SSM)的宠物领养管理系统(论文+PPT)

基于(JavaWebSSM)的宠物领养管理系统(论文PPT) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于ssm的宠物领养系统 本系统分为前台系统、管理员、收养者和寄养者4个功能模块。 前台系统:游客打开系统…

八、访存顺序(Memory Ordering)

前言 这部分的内容比较抽象,很多内容我无法理解,都是直接翻译过来的。虽然难,但是不可不看,如果遇到无法理解的都直接跳过,那后面都无法学习下去了。觉得无法理解是因为目前的知识还很欠缺,到后面具备了这…

大创项目推荐 题目:基于深度学习的手势识别实现

文章目录 1 前言2 项目背景3 任务描述4 环境搭配5 项目实现5.1 准备数据5.2 构建网络5.3 开始训练5.4 模型评估 6 识别效果7 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的手势识别实现 该项目较为新颖,适合作为竞赛课题…

在Linux下搭建自己的私有maven库并部署和发布自定义jar依赖和自定义maven插件(三)开发和发布自己开发的maven插件

系列文章目录 在Linux下搭建自己的私有maven库并部署和发布自定义jar依赖和自定义maven插件(二)发布自己开发的jar包 文章目录 系列文章目录在Linux下搭建自己的私有maven库并部署和发布自定义jar依赖和自定义maven插件(二)发布自己开发的jar包 前言一、插件需求二、maven自定…

算法基础,一维,二维前缀和差分详解

目录 1.前缀和 1.一维前缀和 例题:【模板】前缀和 2.二维前缀和 例题:【模板】二维前缀和 2.差分 1.一维差分 1.性质:d[i]的前缀和等于a[i] 2.性质:后缀区间修改 例题:【模板】差分 2.二维差分 例题&#x…

(已解决)spingboot 后端发送QQ邮箱验证码

打开QQ邮箱pop3请求服务&#xff1a;&#xff08;按照QQ邮箱引导操作&#xff09; 导入依赖&#xff08;不是maven项目就自己添加jar包&#xff09;&#xff1a; <!-- 邮件发送--><dependency><groupId>org.springframework.boot</groupId><…

谷粒商城【成神路】-【4】——分类维护

目录 1.删除功能的实现 2.新增功能的实现 3.修改功能的实现 4.拖拽功能 1.删除功能的实现 1.1逻辑删除 逻辑删除&#xff1a;不删除数据库中真实的数据&#xff0c;用指定字段&#xff0c;显示的表示是否删除 1.在application.yml中加入配置 mybatis-plus:global-config:…

C语言:内存函数(memcpy memmove memset memcmp使用)

和黛玉学编程呀------------- 后续更新的节奏就快啦 memcpy使用和模拟实现 使用 void * memcpy ( void * destination, const void * source, size_t num ) 1.函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。 2.这个函数在遇到 \0 的时候…

关于node.js奇数版本不稳定 将11.x.x升级至16.x.x不成功的一系列问题(一)

据说vue2用16稳定一些 vue3用18好一点&#xff08;但之前我vue3用的16.18.1也可以&#xff09; 为维护之前的老项目 先搞定node版本切换 下载nvm node版本管理工具 https://github.com/coreybutler/nvm-windows/releases 用这个nvm-setup.zip安装包 安之前最好先将之前的nod…

Hadoop:HDFS学习巩固——基础习题及编程实战

一 HDFS 选择题 1.对HDFS通信协议的理解错误的是&#xff1f; A.客户端与数据节点的交互是通过RPC&#xff08;Remote Procedure Call&#xff09;来实现的 B.HDFS通信协议都是构建在IoT协议基础之上的 C.名称节点和数据节点之间则使用数据节点协议进行交互 D.客户端通过一…

搭建frp

1.frp 是什么&#xff1f; frp 是一款高性能的反向代理应用&#xff0c;专注于内网穿透。它支持多种协议&#xff0c;包括 TCP、UDP、HTTP、HTTPS 等&#xff0c;并且具备 P2P 通信功能。使用 frp&#xff0c;您可以安全、便捷地将内网服务暴露到公网&#xff0c;通过拥有公网…

【Mysql】事务的隔离级别与 MVCC

事务隔离级别 我们知道 MySQL 是一个 C/S 架构的服务&#xff0c;对于同一个服务器来说&#xff0c;可以有多个客户端与之连接&#xff0c;每个客户端与服务器连接上之后&#xff0c;就是一个会话&#xff08; Session &#xff09;。每个客户端都可以在自己的会话中向服务器发…

pytorch创建tensor

目录 1. 从numpy创建2. 从list创建3. 创建未初始化tensor4. 设置默认tensor创建类型5. rand/rand_like, randint6. randn生成正态分布随机数7. full8. arange/range9. linspace/logspace10. Ones/zeros/eye11. randperm 1. 从numpy创建 2. 从list创建 3. 创建未初始化tensor T…