【机器学习】基于K-近邻的车牌号识别

news2025/2/3 10:18:28

实验四: 基于K-近邻的车牌号识别

1 案例简介

​ 图像的智能处理一直是人工智能领域广受关注的一类技术,代表性的如人脸识别与 CT 肿瘤识别,在人工智能落地的进程中发挥着重要作用。其中车牌号识别作为一个早期应用场景,已经融入日常生活中,为我们提供了诸多便利,在各地的停车场和出入口都能看到它的身影。车牌号识别往往分为字符划分和字符识别两个子任务,本案例我们将关注字符识别的任务,尝试用 K-NN 的方法对分割好的字符图像进行自动识别和转化。

2 作业说明

2.1 基本要求

  • 完成数据的读入和表示,将图片表示成向量并和 label 对应上;
  • 构建 K-NN 模型(可调库)对测试集中的图片进行预测并计算准确率;
  • 分析当 K 取不同值时测试准确率的变化。

2.2 扩展要求

  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

3 数据概览

本次我们使用已经分割好的车牌图片作为数据集,包括数字 0-9、字母 A-Z(不包含 O 和 I)以及省份简称共 65 个类,编号从 0 到 64。数据已经分成了训练集和测试集,里面的文件夹用 label 编号命名,一个文件夹下的所有图片都属于该文件夹对应的类,每个图片都是 20 * 20 的二值化灰度图。

下面演示一下如何借助 PIL 库将图片转化为向量:

from PIL import Image
img = Image.open('data/train/0/4-3.jpg')  # 打开图片
img  # 显示图片from PIL import Image
img = Image.open('data/train/0/4-3.jpg')  # 打开图片
img  # 显示图片

请添加图片描述

import numpy as np
pixels = np.array(img)  # 转化为 numpy 矩阵
pixels.shape
(20, 20)

4 模型构建

import os
from PIL import Image
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
import random

RANDOM_SEED = 2023

path_train = 'data/train'
path_test = 'data/test'

4.1数据读取

  1. 读取图片

    读取文件夹中指定数量图片

# 读取 num 张图片,将其转换为一维向量
def readImg(path, num = -1):
    count =0
    random.seed(RANDOM_SEED)
    img_array=[]
    for img_name in os.listdir(path):
        img_path = os.path.join(path,img_name)
        img = Image.open(img_path)
        img_array.append(np.array(img).reshape(-1))
    if num > 0 and num < len(img_array):
        img_array = random.sample(img_array,num)
    return img_array

# 测试该函数
folder_path = path_train+'/0'
num = 5
Imgs = readImg(folder_path,num)
len(Imgs)
5
  1. 读取文件夹与标签
# 读取文件标签,并返回图片、标签列表
def readFile(path,nums = -1):
    labels =[]
    Imglist = []
    for label in os.listdir(path):
        path_file = os.path.join(path,label)
        Imgs = readImg(path_file,nums)
        Imglist = Imglist + Imgs
        for i in range(len(Imgs)):
            labels.append(label)
    return np.array(Imglist), np.array(labels)

# 测试该函数
nums = 5
x,y = readFile(path_train,nums)
x.shape,y.shape
((325, 400), (325,))

4.2 划分数据集

x_train,y_train = readFile(path_train)
x_test,y_test = readFile(path_test)
x_train.shape, y_train.shape, x_test.shape, y_test.shape  # 观察训练与测试数据规模
((15954, 400), (15954,), (4665, 400), (4665,))

4.3 模型的训练

model = KNeighborsClassifier(n_neighbors=3, weights='uniform', algorithm='auto')
model.fit(x_train, y_train)  # 记录训练数据
p_test = model.predict(x_test)  # 预测测试图片
accuracy = accuracy_score(p_test, y_test)  # 计算准确率
print(f'accuracy: {accuracy:.4f}')
accuracy: 0.7031

经过测试,在参数取值为n_neighbors=3, weights='uniform', algorithm='auto'时,预测准确率为0.7031

5 模型优化

  • 分析当 K 取不同值时测试准确率的变化;
  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

5.1 不同K值对准确率的变化

k_range = range(1,21)
acc_list = []
sns.set()

for k in k_range:  # 遍历邻居的个数 k
    model = KNeighborsClassifier(k)
    model.fit(x_train, y_train)  # 记录训练数据
    p_test = model.predict(x_test)  # 预测测试图片
    accuracy = accuracy_score(p_test, y_test)  # 计算准确率
    acc_list.append(accuracy)
    print('K: {}, accuracy: {:<.4f}'.format(k, accuracy))
    
plt.plot(k_range, acc_list)  # 画图
plt.xlabel('K')
plt.ylabel('Accuracy')
plt.show()
K: 1, accuracy: 0.7168
K: 2, accuracy: 0.7220
K: 3, accuracy: 0.7031
K: 4, accuracy: 0.7074
K: 5, accuracy: 0.6969
K: 6, accuracy: 0.6965
K: 7, accuracy: 0.6956
K: 8, accuracy: 0.6924
K: 9, accuracy: 0.6913
K: 10, accuracy: 0.6911
K: 11, accuracy: 0.6898
K: 12, accuracy: 0.6857
K: 13, accuracy: 0.6825
K: 14, accuracy: 0.6806
K: 15, accuracy: 0.6776
K: 16, accuracy: 0.6742
K: 17, accuracy: 0.6707
K: 18, accuracy: 0.6686
K: 19, accuracy: 0.6662
K: 20, accuracy: 0.6673

请添加图片描述

由上图可知,在k值取2时准确率最高,随着k值增大,模型准确率程降低趋势

5.2 不同距离度量对模型效果变化

通过改变 metric 参数来测试不同的距离度量。

  • minkowski:闵可夫斯基距离,默认距离度量。
    D ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p D(x,y)=(\sum_{i=1}^n|x_i-y_i|^p)^{\frac{1}{p}} D(x,y)=(i=1nxiyip)p1
  • euclidean:欧几里得距离,两个数值向量点之间的长度
    D ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 D(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} D(x,y)=i=1n(xiyi)2
  • manhattan:曼哈顿距离,又称城市街区距离,它的计算方式有点类似于只能90度拐角的街道长度。
    D ( x , y ) = ∑ i = 1 k ∣ x i − y i ∣ D(x,y)=\sum_i=1^k|x_i-y_i| D(x,y)=i=1kxiyi
  • chebyshev:chebyshev距离是两个数值向量在单个维度上绝对值差值最大的那个值。
    D ( x , y ) = max i ( ∣ x i − y i ∣ ) D(x,y)=\text{max}_i(|x_i-y_i|) D(x,y)=maxi(xiyi)
metrics = ['minkowski', 'euclidean', 'manhattan', 'chebyshev' ]
acc_list = []

for metric in metrics:  # 遍历距离度量类型
    model = KNeighborsClassifier(metric = metric)
    model.fit(x_train, y_train)  # 记录训练数据
    p_test = model.predict(x_test)  # 预测测试图片
    accuracy = accuracy_score(p_test, y_test)  # 计算准确率
    acc_list.append(accuracy)
    print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))

结果:

metric: minkowski, accuracy: 0.6969
metric: euclidean, accuracy: 0.6969
metric: manhattan, accuracy: 0.6920
metric: chebyshev, accuracy: 0.4090

绘制柱状图,可视化表示:

plt.bar(metrics, acc_list)  # 画图
plt.show()

请添加图片描述

由上图可见,minkowski, euclidean, manhattan三种举例向量效果类似, chebyshev效果明显较差。

5.3 平均和加权KNN的区别

  • uniform: 平均KNN,这意味着所有的邻居节点在投票过程中具有相同的权重。也就是说,每个邻居节点对最终结果的影响是一样的,不考虑它们与查询点的距离。

  • distance:加权KNN,这意味着邻居节点的权重与它们到查询点的距离成反比。也就是说,距离查询点更近的邻居节点将对最终结果有更大的影响,而距离较远的邻居节点的影响较小。

weights = ['uniform', 'distance']
acc_list = []

for weight in weights:
    model = KNeighborsClassifier(weights = weight)
    model.fit(x_train, y_train)  # 记录训练数据
    p_test = model.predict(x_test)  # 预测测试图片
    accuracy = accuracy_score(p_test, y_test)  # 计算准确率
    acc_list.append(accuracy)
    print('metric: {}, accuracy: {:<.4f}'.format(metric, accuracy))

结果:

metric: chebyshev, accuracy: 0.6969
metric: chebyshev, accuracy: 0.7016

绘制柱状图,可视化表示:

plt.bar(weights, acc_list)  # 画图
plt.show()

请添加图片描述

由上图可见,平均与加权结果类似,加权效果较好于平均KNN。

5.4 训练集大小对模型效果的影响

train_range = [1, 5, 10, 20, 50, 100, 200, 400, 600]
acc_lst = list()

for train_num in train_range:
    x_train, y_train = readFile(path_train, train_num)
    model = KNeighborsClassifier()
    model.fit(x_train, y_train)
    p_test = model.predict(x_test)
    accuracy = accuracy_score(p_test, y_test)
    acc_lst.append(accuracy)
    print('train: {}, accuracy: {:<.4f}'.format(train_num, accuracy))

结果:

train: 1, accuracy: 0.1972
train: 5, accuracy: 0.4264
train: 10, accuracy: 0.5035
train: 20, accuracy: 0.5906
train: 50, accuracy: 0.6568
train: 100, accuracy: 0.6707
train: 200, accuracy: 0.7005
train: 400, accuracy: 0.7065
train: 600, accuracy: 0.7025

绘制折线图,可视化表示:

plt.plot(train_range, acc_lst)
plt.xlabel('train')
plt.ylabel('Accuracy')
plt.show()


请添加图片描述

由上图可见,数据集数量越大,准确率越高,但是达到一定大小后增长变缓,甚至会有略微降低。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1427543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue2使用echarts自定义tooltip内容

先上最终效果图 # 实现过程&#xff1a; 一、下载引入echarts 下载 npm install echarts --save在main.js中引入 import * as echarts from "echarts"; Vue.prototype.$echarts echarts;二、使用 <template><div id"myechart" style"…

[香橙派开发系列]使用蓝牙和手机进行信息的交换

文章目录 前言一、HC05蓝牙模块1.HC05概述2.HC05的连接图3.进入HC05的命令模式4.常用的AT指令4.1 检查AT是否上线4.2 重启模块4.3 获取软件版本号4.4 恢复默认状态4.5 获取蓝牙的名称4.6 设置蓝牙模块的波特率4.7 查询蓝牙的连接模式4.8 查询模块角色 5.连接电脑6.通过HC05发送…

Python爬虫的基本原理

我们可以把互联网比作一张大网&#xff0c;而爬虫&#xff08;即网络爬虫&#xff09;便是在网上爬行的蜘蛛。把网的节点比作一个个网页&#xff0c;爬虫爬到这就相当于访问了该页面&#xff0c;获取了其信息。可以把节点间的连线比作网页与网页之间的链接关系&#xff0c;这样…

C#——三角形面积公式

已知三角形的三个边&#xff0c;求面积&#xff0c;可以使用海伦公式。 因此&#xff0c;可以执行得到三角形面积公式的计算方法代码如下&#xff1a; /** / <summary>* / 三角形面积公式* / </summary>* / <param name"a">边长a</param>*…

在idea中使用maven编译包,直接打包到远程环境上去了

执行指令 mvn clean install编译包的结果指向远程环境上去了 报错信息 No SSH configuration for 修改idea远程连接配置&#xff0c;改回编包打包到本地。 settings -> Build,Execution,Deployment -> Run Targets 删除掉这部分配置即可。 如果想改成直接编包到远程…

latex表格使用总结

参考博客 https://blog.csdn.net/TH_guan/article/details/124878398 测试了一下latex里面表格的用法 \documentclass{article} \usepackage{booktabs} % 导入三线表需要的宏包 \usepackage{booktabs} % 导入三线表需要的宏包 \usepackage{longtable}% 导入跨页表格所需宏包 …

【打赏】完美运营的最新视频打赏系统

完美运营的最新视频打赏系统优于市面上95%的打赏系统&#xff0c;与其他打赏系统相比&#xff0c;功能更加强大&#xff0c;完美运营且无bug。支付会调、短链接生成、代理后台、价格设置和试看功能等均没有问题。 以上为原简介&#xff0c;经测试验证。成功搭建并可以正常进入…

【GitHub项目推荐--大语言模型课程】【转载】

Large Language Model Course Large Language Model Course&#xff08;大型语言模型课程&#xff09;是一个开源项目&#xff0c;该课程分为三个部分&#xff1a; LLM 基础&#xff1a;涵盖了数学、Python 和神经网络的基础知识。 LLM 科学家&#xff1a;专注于学习如何使用…

DBeaver连接ClickHouse,时间少了8小时

文章目录 业务场景问题描述解决办法 业务场景 表字段time&#xff0c;类型为Datetime&#xff0c;插入时间格式为“yyyy-MM-dd HH:mm:ss” 问题描述 插入表中的时间比正常给的时间少了8小时。如&#xff0c;给定时间为&#xff1a; 2024-01-30 14:52:08 在表中显示的时间为&…

生物素-PEG4-酪胺,Biotin-PEG4-TSA,应用于酶联免疫吸附实验

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;生物素-PEG4-酪胺&#xff0c;Biotin-PEG4-Tyramide&#xff0c;Biotin-PEG4-TSA 一、基本信息 产品简介&#xff1a;Biotin PEG4 Tyramine is a reagent used for tyramine signal amplification (TSA) through ca…

前端通过nginx,访问一个文件夹里面的全部数据,nginx 咋配置

目录 1 问题2 实现 1 问题 前端通过nginx,访问一个文件夹里面的全部数据&#xff0c;nginx 咋配置 2 实现 location /logs {alias /mnt/www/logs/;autoindex on; }

【Git】03 图形化工具

文章目录 一、右击菜单二、打开仓库三、可视化所有分支历史四、总结 一、右击菜单 二、打开仓库 三、可视化所有分支历史 四、总结 图形化工具了解一下&#xff0c;要懂得在哪里能找到。

echarts条形图添加滚动条

效果展示: 测试数据: taskList:[{majorDeptName:测试,finishCount:54,notFinishCount:21}, {majorDeptName:测试,finishCount:54,notFinishCount:21}, {majorDeptName:测试,finishCount:54,notFinishCount:21}, {majorDeptName:测试,finishCount:54,notFinishCount:21}, {maj…

帅气的性能监控平台Grafana(Windows下使用Grafana监控系统指标与GPU指标)

帅气的性能监控平台Grafana&#xff08;Windows下使用Grafana监控系统指标与GPU指标&#xff09; 前情提要 系统环境准备 windows_exporter下载 nvidia_gpu_exporter下载 prometheus下载 Grafana下载 安装指导 windows_exporter安装与nvidia_gpu_exporter安装 promethe…

leetcode热题100.二叉树中的最大路径和

Problem: 124. 二叉树中的最大路径和 文章目录 题目解题方法复杂度Code 题目 二叉树中的 路径 被定义为一条节点序列&#xff0c;序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点&#xff0c;且不一定经过根节点。 …

项目安全问题及解决方法------使用合适的算法

Spring Security 已经废弃了 MessageDigestPasswordEncoder&#xff0c;推荐使用 BCryptPasswordEncoder private static BCryptPasswordEncoder passwordEncoder new BCryptPasswordEncoder(); GetMapping("performance")public void performance() {StopWatch st…

抖音短视频矩阵营销系统源头独立开发搭建

开发背景 抖音短视频矩阵系统源码开发采用模块化设计&#xff0c;包括账号分析、营销活动、数据监控、自动化管理等功能。通过综合分析账号数据&#xff0c;快速发现账号的优势和不足&#xff0c;并提供全面的营销方案&#xff0c;以提高账号曝光率和粉丝数量。同时&#xff0c…

Axure 动态面板初使用-实现简单的tab切换页面效果

使用工具版本 Axure 9 实现的效果 步骤过程 1、打开Axure 9&#xff0c;默认进入一个空白页&#xff0c;首先从元件库拉一个动态面板到页面中&#xff0c;位置肯定是C位咯~ 2、将面板尺寸调整一下&#xff0c;设置成你喜欢的数字&#xff0c;比如我就喜欢800600 3、然后…

MySQL原理(五)事务

一、介绍&#xff1a; 1、介绍&#xff1a; 在计算机术语中&#xff0c;事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。事务是恢复和并发控制的基本单位。 2、事务的4大特性 原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性…

2023年09月CCF-GESP编程能力等级认证Python编程五级真题解析

Python等级认证GESP(1~6级)全部真题・点这里 一、单选题(共15题,共30分) 第1题 近年来,线上授课变得普遍,很多有助于改善教学效果的设备也逐渐流行,其中包括比较常用的手写板,那么它属于哪类设备?( ) A:输入 B:输出 C:控制 D:记录 答案:A 第2题 以下关于…