C++ STL库详解:容器适配器stack和queue的结构及功能

news2025/2/5 0:36:38

一、stack

1.1stack的介绍

1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:
empty:判空操作
back:获取尾部元素操作
push_back:尾部插入元素操作
pop_back:尾部删除元素操作
4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque。

1.2 stack的使用

函数说明
接口说明
stack()
构造空的栈
empty()
检测 stack 是否为空
size()
返回 stack 中元素的个数
top()
返回栈顶元素的引用
push()
将元素 val 压入 stack
pop()
stack 中尾部的元素弹出

1.3stack的模拟实现

#include<vector>
namespace bite
{
	template<class T>
	class stack
	{
	public:
		stack() {}
		void push(const T& x) { _c.push_back(x); }
		void pop() { _c.pop_back(); }
		T& top() { return _c.back(); }
		const T& top()const { return _c.back(); }
		size_t size()const { return _c.size(); }
		bool empty()const { return _c.empty(); }
	private:
		std::vector<T> _c;
	};
}

二、queue

2.1queue的介绍

1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。
2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列。
3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
(1)empty:检测队列是否为空。
(2)size:返回队列中有效元素的个数。
(3)front:返回队头元素的引用。
(4)back:返回队尾元素的引用。
(5)push_back:在队列尾部入队列。
(6)pop_front:在队列头部出队列。
4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque。

2.2 queue的使用

函数声明
接口说明
queue()
构造空的队列
empty()
检测队列是否为空,是返回 true ,否则返回 false
size()
返回队列中有效元素的个数
front()
返回队头元素的引用
back()
返回队尾元素的引用
push()
在队尾将元素 val 入队列
pop()
将队头元素出队列

2.3 queue的模拟实现

因为queue的接口中存在头删和尾插,因此使用vector来封装效率太低,故可以借助list来模拟实现queue,具体如下:
#include <list>
namespace bite
{
	template<class T>
	class queue
	{
	public:
		queue() {}
		void push(const T& x) { _c.push_back(x); }
		void pop() { _c.pop_front(); }
		T& back() { return _c.back(); }
		const T& back()const { return _c.back(); }
		T& front() { return _c.front(); }
		const T& front()const { return _c.front(); }
		size_t size()const { return _c.size(); }
		bool empty()const { return _c.empty(); }
	private:
		std::list<T> _c;
	};
}

三、priority_queue

3.1priority_queue的介绍

1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
(1)empty():检测容器是否为空
(2)size():返回容器中有效元素个数
(3)front():返回容器中第一个元素的引用
(4)push_back():在容器尾部插入元素
(5)pop_back():删除容器尾部元素
5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。
6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

3.2priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆
函数声明
接口说明
priority_queue()/priority_queue(first,
last)
构造一个空的优先级队列
empty( )
检测优先级队列是否为空,是返回 true ,否则返回
false
top( )
返回优先级队列中最大 ( 最小元素 ) ,即堆顶元素
push(x)
在优先级队列中插入元素 x
pop ()
删除优先级队列中最大 ( 最小 ) 元素,即堆顶元素
1.默认情况下,priority_queue是大堆:
#include <vector>
#include <queue>
#include <functional> // greater算法的头文件
void TestPriorityQueue()
{
	// 默认情况下,创建的是大堆,其底层按照小于号比较
	vector<int> v{ 3,2,7,6,0,4,1,9,8,5 };
	priority_queue<int> q1;
	for (auto& e : v)
		q1.push(e);
	cout << q1.top() << endl;
	// 如果要创建小堆,将第三个模板参数换成greater比较方式
	priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
	cout << q2.top() << endl;
}

2.如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载

class Date
{
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}
	bool operator<(const Date& d)const
	{
		return (_year < d._year) ||
			(_year == d._year && _month < d._month) ||
			(_year == d._year && _month == d._month && _day < d._day);
	}
	bool operator>(const Date& d)const
	{
		return (_year > d._year) ||
			(_year == d._year && _month > d._month) ||
			(_year == d._year && _month == d._month && _day > d._day);
	}
	friend ostream& operator<<(ostream& _cout, const Date& d)
	{
		_cout << d._year << "-" << d._month << "-" << d._day;
		return _cout;
	}
private:
	int _year;
	int _month;
	int _day;
};
void TestPriorityQueue()
{
	// 大堆,需要用户在自定义类型中提供<的重载
	priority_queue<Date> q1;
	q1.push(Date(2018, 10, 29));
	q1.push(Date(2018, 10, 28));
	q1.push(Date(2018, 10, 30));
	cout << q1.top() << endl;
	// 如果要创建小堆,需要用户提供>的重载
	priority_queue<Date, vector<Date>, greater<Date>> q2;
	q2.push(Date(2018, 10, 29));
	q2.push(Date(2018, 10, 28));
	q2.push(Date(2018, 10, 30));
	cout << q2.top() << endl;
}

 四、容器适配器

4.1适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口

4.2STL标准库中stackqueue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:

4.3 deque

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:

 

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂

缺陷 :与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。
与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。
但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。
选择deque作为stack和queue的底层默认容器的原因:
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。结合了deque的优点,而完美的避开了其缺陷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1427101.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【目标跟踪】3D点云跟踪

文章目录 一、前言二、代码目录三、代码解读3.1、文件描述3.2、代码框架 四、关联矩阵计算4.1、ComputeLocationDistance4.2、ComputeDirectionDistance4.3、ComputeBboxSizeDistance4.4、ComputePointNumDistance4.5、ComputePointNumDistance4.6、result_distance 五、结果 一…

实现div拖拽demo

示例代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title>&…

51单片机编程应用(C语言):数码管

目录 1.数码管原理 一位数码管引脚定义&#xff1a; 四位一体数码管&#xff1a; 多个数码管同时显示不同数字 51单片机的数码管的原理图 51单片机实现静态显示和动态显示 静态显示&#xff1a; 动态显示&#xff1a; 1.数码管原理 一位数码管引脚定义&#xff1a; 数码…

idea查看日志的辅助插件 --- Grep Console (高亮、取消高亮)

&#x1f680; 分享一款很有用的插件&#xff1a;Grep Console &#x1f680; 我们在查看日志的时候可能会有遗漏&#xff0c;使用这款插件可以让特定的关键词高亮&#xff0c;可以达到不遗漏的效果&#xff01; 如果你是一个开发者或者对日志文件分析感兴趣&#xff0c;不要…

linux搭建jupyter

查看虚拟环境 conda info --envs进入虚拟环境 conda activate my_env pip install jupyter pip install ipykernel1. jupyter notebook启动 1.1 创建临时jupyter notebook任务 jupyter notebook --ip0.0.0.0 --no-browser --allow-root --notebook-dir/home/xxx1.2 jupyter…

Xcode报fatal error: ‘XXX.h‘ file not found

在Xcode中遇到 "fatal error: XXX.h file not found" 的错误通常是由于缺少头文件或头文件路径配置不正确导致的。 以下仅为我的解决方案&#xff1a; 1.点击项目名——>显示此页面 2.选择Build Settings——>输入 Search Paths 3. 点击空白处添加路径 4…

使用浏览器开发工具分析性能

使用浏览器开发工具分析性能 一、网络分析二、性能分析 一、网络分析 1、面板概览&#xff1a; Controls (控件) : 控制面板的功能Filters (过滤器) : 控制在请求列表中显示哪些资源Overview (概览) : 展示检索资源的时间轴&#xff0c;多个垂直堆叠的栏意味着这些资源被同时…

2024杭州国际安防展览会:引领数字城市安全与智能未来

随着科技的不断进步&#xff0c;数字城市已经成为未来城市发展的重要趋势。作为数字城市建设的重要组成部分&#xff0c;安防技术的创新与应用对于保障城市安全、提高生活品质具有重要意义。为此&#xff0c;2024杭州国际安防展览会将于4月份在杭州国际博览中心隆重召开&#x…

储能新纪元:第十三届中国国际储能大会(CIES2023)深度洞察与未来趋势

随着全球能源结构的持续优化和可再生能源的迅猛发展&#xff0c;储能技术作为支撑能源转型的关键力量&#xff0c;日益受到世界各国的关注。 在这一背景下&#xff0c;2023年第十三届中国国际储能大会&#xff08;CIES2023&#xff09;的召开&#xff0c;无疑为行业内外人士提…

PDF中公式转word

效果&#xff1a;实现pdf中公式免编辑 step1: 截图CtrlAltA&#xff0c;复制 step2: SimpleTex - Snip & Get 网页或客户端均可&#xff0c;无次数限制&#xff0c;效果还不错。还支持手写、文字识别 单张图片&#xff1a;选 手写板 step3: 导出结果选择 注&#xff1a;…

网络协议与攻击模拟_12DNS协议及Windows部署DNS服务器

1、了解域名的结构 2、DNS查询过程 3、Windwos server部署DNS服务器 4、分析流量 实施DNS欺骗 再分析 一、DNS域名系统 1、DNS简介 DNS&#xff08;Domain Name system&#xff09;域名系统&#xff0c;作为将域名的IP地址的相互映射关系存放在一个分布式的数据库&#xff0c…

OBB头篇 | 原创自研 | YOLOv8 更换 SEResNeXtBottleneck 头 | 附详细结构图

左图:ResNet 的一个模块。右图:复杂度大致相同的 ResNeXt 模块,基数(cardinality)为32。图中的一层表示为(输入通道数,滤波器大小,输出通道数)。 1. 思路 ResNeXt是微软研究院在2017年发表的成果。它的设计灵感来自于经典的ResNet模型,但ResNeXt有个特别之处:它采用…

小米服务治理——客户端熔断器(Google SRE客户端熔断器)

目录 前言 一、什么是Google SRE熔断器 二、Google SRE 熔断器的工作流程&#xff1a; 三、客户端熔断器 (google SRE 熔断器) golang GRPC 实现 四、客户端熔断器 (google SRE 熔断器) golang GRPC单元测试 大家可以关注个人博客&#xff1a;xingxing – Web Developer …

【动态规划】【C++算法】1340. 跳跃游戏 V

作者推荐 【动态规划】【字符串】【表达式】2019. 解出数学表达式的学生分数 本文涉及知识点 动态规划汇总 LeetCode1340跳跃游戏 V 给你一个整数数组 arr 和一个整数 d 。每一步你可以从下标 i 跳到&#xff1a; i x &#xff0c;其中 i x < arr.length 且 0 < x…

提及闭包函数,不得不说【python装饰器】

什么是装饰器 1. python装饰器是用于拓展原来函数功能的一种函数&#xff0c;目的是在不改变原函数的情况下&#xff0c;给函数增加功能。 2. 装饰器是通过闭包实现&#xff0c;所以讲装饰器首先得知道什么是闭包。 前言 什么是闭包 一、什么是闭包 1. 一个定义在函数内部的函…

[职场] 个人简历教育背景怎么填 #其他#笔记#媒体

个人简历教育背景怎么填 一个人的受教育程度很大部分决定了此人的专业素质&#xff0c;简历中的教育背景是HR衡量求职者的标准&#xff0c;因此教育背景部分在简历中比较靠前。 怎么写教育背景&#xff1f; 1、时间 首先&#xff0c;最重要的是你要注明好时间&#xff0c;时间都…

idea搭建spring5.3.x源码环境

1.写在前面的话 碰到了不少想阅读或者学习spring源码的同学&#xff0c;但是第一步搭建这个源码阅读环境就能难倒了一大批人。下面我就以spring5.3.x这个源码分支&#xff0c;来具体演示一下搭建过程。 2. 下载源码 下载源码这一步&#xff0c;说实话&#xff0c;由于某些原…

STM32控制DS18B20温度传感器获取温度

时间记录&#xff1a;2024/1/28 一、DS18B20温度传感器介绍 &#xff08;1&#xff09;测温范围-55℃~125℃&#xff0c;在-10℃到85℃范围内误差为0.4 &#xff08;2&#xff09;返回的温度数据为16位二进制数据 &#xff08;3&#xff09;STM32和DS18B20通信使用单总线协议…

算法模板 3.二分查找

二分查找 789. 数的范围 - AcWing题库 check函数&#xff08;lr&#xff08;这里要不要1&#xff09;&#xff09;>> 1 &#xff0c;要根据具体情况&#xff0c;如果是r mid的话lr就不用1&#xff0c;l mid的话就要1 #include <bits/stdc.h> using namespace s…

Android Retrofit添加header参数

前言 有些接口需要单独设置header参数 作为标记 如何灵活 或者统一设置请求header呢 注解Headers 顾名思义 Headers是指多个header 放在对象里 统一管理 //获取xxx Headers({"Content-Type: application/json","User-Agent: test"}) POST("xxxx&q…