C++之平衡二叉搜索树查找

news2024/10/6 4:09:42

个人主页:[PingdiGuo_guo]

收录专栏:[C++干货专栏]

大家好,我是PingdiGuo,今天我们来学习平衡二叉搜索树查找。

目录

1.什么是二叉树

2.什么是二叉搜索树

3.什么是平衡二叉搜索树查找

4.如何使用平衡二叉搜索树查找

5.平衡二叉搜索树查找的用处

6.平衡二叉搜索树查找适合解决什么样的问题

7.注意事项

8.总结


1.什么是二叉树

二叉树(Binary Tree)是一种基本的数据结构,它是由n(n≥0)个节点组成的有限集合。在二叉树中,每个节点最多含有两个子节点,分别称为左子节点(left child)和右子节点(right child)。根据节点的连接方式和节点间的关系,二叉树可以有不同的形态和用途。

以下是二叉树的一些关键特性:
1.根节点(Root Node):二叉树中的顶级节点,没有父节点。


2.叶节点(Leaf Node / Terminal Node):没有子节点的节点。


3.内部节点(Internal Node):至少有一个子节点的节点。


4.空(或空树):没有任何节点的二叉树。


5.二叉树的层级:从根开始算起,每一层包含的节点数量可以从1开始递增。

二叉树按照节点间的特定关系还可以进一步分类,比如:
- 满二叉树 (Full Binary Tree):除了叶子节点外,每个节点都有两个子节点,且所有叶子节点都在最后一层。


- 完全二叉树 (Complete Binary Tree):除了最后一层外,每一层都被完全填满,且最后一层的所有节点都尽可能地靠左排列。


- 二叉搜索树 (Binary Search Tree, BST):对于树中的任意节点,其左子树中所有节点的值小于该节点的值,而右子树中所有节点的值大于该节点的值。

而我们要学习的平衡二叉搜索树查找,就是在二叉搜索树之上的一种算法。

2.什么是二叉搜索树

二叉搜索树(Binary Search Tree, BST)是一种特定数据结构。在二叉搜索树中,每个节点包含一个键(key)及其关联的值,且满足以下特性:

1. 每个节点的键大于其左子树中任意节点的键。
2. 每个节点的键小于其右子树中任意节点的键。
3. 左右子树也各自遵循相同的规则。

3.什么是平衡二叉搜索树查找

在了解平衡二叉搜索树查找之前,我们需要先来了解什么是二叉搜索树查找。

1. BST查找(二叉搜索树查找):
   - BST是一种基本的二叉树结构,它满足以下性质:
     - 左子树上的所有节点的值都小于根节点的值。
     - 右子树上的所有节点的值都大于根节点的值。
     - 左右子树也分别为BST。
- 查找效率取决于树的形状。在最坏情况下,如果BST退化成链状结构(所有节点的左子树为空或右子树为空),查找的时间复杂度会达到O(n),其中n为树中节点的数量。
- 优点:对于有序数据,查找、插入和删除的平均时间复杂度都是O(log n);易于实现且直观。

链状结构:

2. 平衡二叉搜索树查找:
   - 平衡二叉搜索树是一种具备自动平衡性的二叉搜索树,其中最常见的是AVL树和红黑树。
   - 平衡二叉搜索树通过特定的平衡调整操作,例如旋转和调整节点的平衡因子,来保持树的平衡性。
 - 查找、插入和删除操作的最坏时间复杂度均被保证为O(log n),提升了性能的稳定性。
- 在大规模数据处理中,通过自平衡机制避免了极端情况下的性能下降。
   - 平衡二叉搜索树相比于BST,实现更为复杂,需要考虑平衡调整操作和存储平衡因子,但能提供更稳定的查找性能。

总结来说,平衡二叉搜索树相比于普通的二叉搜索树能够提供更稳定的查找性能,并且适用于需要频繁插入和删除操作的场景。但它的实现要比BST复杂一些。在一些简单的应用场景中,BST也能满足要求,并且实现更简单。选择使用哪种树结构取决于具体需求和性能要求。

AVL树:


查找步骤:
1. 从根节点开始。
2. 比较当前节点的值与目标值的大小关系。
- 如果目标值等于当前节点的值,则查找结束,找到目标节点。
- 如果目标值小于当前节点的值,则递归地在当前节点的左子树中查找。
- 如果目标值大于当前节点的值,则递归地在当前节点的右子树中查找。
3. 重复步骤2,直到找到目标节点或者遍历到空节点为止。

示例

假设我们有一个AVL树如下所示(以括号形式表示节点及其左右子树,其中数字代表节点值):
      5
     /   \
   3     7
  /  \      \

2     4      8

现在我们要查找值为4的节点:
- 首先从根节点5开始查找。
- 因为4小于5,所以我们移动到左子树(节点3)。
- 接着比较4和3,因为4大于3,所以移动到节点3的右子树(节点4)。
- 发现节点4的值正好等于目标值4,查找结束。

因此,在这个例子中,我们成功找到了值为4的节点。在整个查找过程中,我们只需要经过两次比较就找到了目标节点,这正是AVL树高效查找能力的体现。

查找思想:
二叉搜索树的核心思想是“有序性”,即对于任意节点而言,其左子树中的所有节点值都小于该节点值右子树中的所有节点值都大于该节点值。因此,查找过程可以通过比较节点值快速缩小查找范围,时间复杂度理论上可以达到O(log n),其中n是树中节点的数量

为何需要引入平衡性质?

尽管二叉搜索树具有较好的查找性能,但如果树的形状严重偏离平衡,比如变为链状结构,那么查找最坏情况下的时间复杂度会退化为O(n)。为了确保查找、插入和删除等操作的时间复杂度始终维持在接近O(log n)的水平,我们需要对二叉搜索树添加自平衡机制,这就是平衡二叉搜索树的设计初衷。

4.如何使用平衡二叉搜索树查找

1. 导入相应的头文件,如#include <set>或#include <map>,这些头文件中已经实现了平衡二叉搜索树。

2. 定义相应的平衡二叉搜索树对象,例如std::set<int>或std::map<int, std::string>。

3. 使用插入操作将数据插入到平衡二叉搜索树中,例如使用insert方法,如set.insert(value)或map.insert(std::make_pair(key, value))。

4. 使用find方法进行查找操作,找到指定的值或键,并返回对应的迭代器。

5. 对于map类型的平衡二叉搜索树,你可以通过迭代器访问其键值对,例如iter->first代表键,iter->second代表值。

以下是一个简单的示例代码:

#include <iostream>
#include <set>

int main() {
    std::set<int> mySet;
    
    // 插入数据
    mySet.insert(5);
    mySet.insert(10);
    mySet.insert(3);
    mySet.insert(7);
    mySet.insert(12);
    
    // 查找数据
    std::set<int>::iterator iter = mySet.find(7);
    if (iter != mySet.end()) {
        std::cout << "找到了值为7的元素" << std::endl;
    } else {
        std::cout << "未找到值为7的元素" << std::endl;
    }
    
    return 0;
}

在上述代码中,我们使用std::set来创建一个平衡二叉搜索树,并插入了一些数据。然后,我们使用find方法来查找值为7的元素。最后,根据查找结果输出相应的提示信息。

5.平衡二叉搜索树查找的用处

平衡二叉搜索树在C++中的查找操作有以下几个用途:

1. 快速搜索:平衡二叉搜索树具有较快的查找速度,时间复杂度为O(log n),其中n为树中节点的数量。这使得它非常适合用于大量数据的快速搜索,特别是在需要频繁进行查找操作的情况下。

2. 排序:平衡二叉搜索树保持元素的有序性。它会自动根据元素的大小进行排序,因此可以很方便地进行有序的遍历和操作。

3. 唯一性:平衡二叉搜索树不允许元素的重复插入。这意味着你可以很容易地检查并避免重复的数据。

4. 范围查找:平衡二叉搜索树支持范围查找操作。你可以通过指定一个范围,查找树中满足范围条件的元素。

5. 插入和删除的平衡性:平衡二叉搜索树会在插入和删除操作后自动进行平衡,保持树的平衡性。这意味着即使进行了频繁的插入和删除操作,树的结构仍然是平衡的,这对于保持查找效率非常重要。

总而言之,平衡二叉搜索树在C++中的查找操作非常有用,特别是在需要快速搜索、排序和唯一性检查的场景下。它提供了高效的查找和操作性能,同时还能保持树的平衡性。

6.平衡二叉搜索树查找适合解决什么样的问题

平衡二叉搜索树查找适合解决需要高效查找操作的问题特别是在数据量较大且需要频繁进行查找的情况下。以下是一些适合使用平衡二叉搜索树查找的问题:

1. 数据库系统:平衡二叉搜索树可以用于实现数据库的索引结构,快速查找满足某个条件的数据记录。

2. 字典/词典:平衡二叉搜索树可以用于实现字典或词典,存储单词及其对应的定义,可以快速查找某个单词的定义。

3. 路由表:平衡二叉搜索树可以用于路由表的设计,在网络路由中快速找到对应的目标地址。

4. 排名和统计:平衡二叉搜索树可以用于统计数据中的最大/最小值、中位数等,也可以根据某个值的排名进行查找。

总之,平衡二叉搜索树查找适合解决需要高效查找操作的问题,特别是在动态数据集合中需要频繁插入、删除和查找操作的场景下,可以提供较好的性能和效率。

7.注意事项

在使用平衡二叉搜索树时,有一些注意事项,特别是在C++中,以下是需要注意的几点:

1. 实现细节:平衡二叉搜索树的实现需要注意各种平衡因子的计算和旋转操作的正确性。在实现过程中,可以使用AVL树、红黑树等常见的平衡二叉搜索树的实现方法。

2. 内存管理:在动态分配节点内存时,需要注意正确释放节点的内存,以避免内存泄漏。可以使用智能指针来管理节点的内存,或者采用手动管理内存的方式。

3. 操作复杂度:平衡二叉搜索树的插入、删除和查找操作的平均时间复杂度为O(log n),但最坏情况下可能退化为O(n)。为了避免这种情况,需要正确实现平衡因子的维护和旋转操作。

4. 迭代器遍历:平衡二叉搜索树可以通过迭代器进行遍历操作,但需要确保迭代器的正确性。在进行插入、删除操作时,需要更新迭代器的位置。

5. 自定义比较函数:在C++中,可以通过实现自定义的比较函数来定义节点的排序规则。这对于存储自定义类型的数据结构非常有用。

6. 并发访问:如果多个线程同时访问和修改同一个平衡二叉搜索树,需要考虑并发访问的问题。可以采用锁机制来保证数据的一致性和安全性。

总之,在使用平衡二叉搜索树时,需要确保正确实现平衡因子的维护和旋转操作,注意内存管理和操作复杂度,同时考虑迭代器遍历和自定义比较函数的使用,以及并发访问的问题。

8.总结

本篇博客到这里就结束了,感谢大家的支持与观看,如果有好的建议欢迎留言,谢谢大家啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1426732.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#,阿格里数(Ugly Number)的多种算法与源代码

1 丑数&#xff0c;阿格里数 阿格里数&#xff0c;即丑数&#xff08;Ugly Number&#xff09;、逊数&#xff08;Humble Number&#xff09;。 一般而言&#xff1a;把只包含质因子2&#xff0c;3和5的数称作丑数&#xff08;Ugly Number&#xff09;。例如6、8都是丑数&…

基于PSO-BP神经网络的风电功率MATLAB预测程序

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 参考文献 基于风电场运行特性的风电功率预测及应用分析——倪巡天 资源简介 由于自然风具有一定的随机性、不确定性与波动性&#xff0c;这将会使风电场的功率预测受到一定程度的影响&#xff0c;它们之间…

FPGA高端项目:Xilinx Zynq7020系列FPGA 多路视频缩放拼接 工程解决方案 提供4套工程源码+技术支持

目录 1、前言版本更新说明给读者的一封信FPGA就业高端项目培训计划免责声明 2、相关方案推荐我这里已有的FPGA图像缩放方案我已有的FPGA视频拼接叠加融合方案本方案的Xilinx Kintex7系列FPGA上的ov5640版本本方案的Xilinx Kintex7系列FPGA上的HDMI版本本方案的Xilinx Artix7系列…

探索设计模式的魅力:从单一继承到组合模式-软件设计的演变与未来

设计模式专栏&#xff1a;http://t.csdnimg.cn/nolNS 在面对层次结构和树状数据结构的软件设计任务时&#xff0c;我们如何优雅地处理单个对象与组合对象的一致性问题&#xff1f;组合模式&#xff08;Composite Pattern&#xff09;为此提供了一种简洁高效的解决方案。通过本…

C++类与对象:默认成员函数

文章目录 1.类的6个默认成员函数2.构造函数3.析构函数4. 拷贝构造函数5.赋值运算符和运算符重载6.日期类实现7.const成员8.重载流插入<< &#xff0c;流提取>>1.流插入2.流提取 9.取地址及const取地址操作符重载 1.类的6个默认成员函数 空类:也就是什么成员都没有的…

Spring Boot集成Redisson详细介绍

Redisson是一个用于Java的分布式和高可用的Java对象的框架&#xff0c;它基于Redis实现。在Spring Boot应用程序中集成Redisson可以帮助我们更轻松地实现分布式锁、分布式对象、分布式集合等功能。本文将介绍如何在Spring Boot项目中集成Redisson&#xff0c;并展示一些基本用法…

vs正则搜索 int main() 排除 // int main()

1 ctrl f 2 选择正则 3 表达式 ^\s*int\smain\(\) ^ 表示匹配行开始\s* 匹配0个或多个空格int 匹配int关键字\s 匹配一个或多个空格main\( 匹配main函数和左括号

ChatGPT真有很多人在用吗?——回答一位知友的问题

先上结论 是的。数据不会撒谎&#xff0c;用户拿脚投票&#xff0c;ChatGPT发布仅五天内就达到了100万用户&#xff0c;是有史以来增长最快的消费者应用程序。2023年全球前50款AI工具就收获了240亿次访问&#xff0c;其中ChatGPT收获了146亿次访问。 一些想法和思考 我的一些…

9.defer语句调用顺序

目录 概述实践defer结果defer和return执行顺序 结束 概述 defer 类似 java 中的异常处理中的 finally &#xff0c;在 Go 中 defer 是一种压栈出栈操作。 实践 defer package mainimport "fmt"func demo1() {fmt.Println("demo1") }func demo2() {fmt.Pr…

MySql调优(三)Query SQL优化(2)profiler诊断工具

Mysql中自带性能分析工具Profile。注意&#xff1a;profile仅对当前会话有效 一、操作步骤 1、打开 profile set profiling1; 2、执行sql语句 3、分析sql语句执行时间 show profiles 其他参数&#xff1a; ALL&#xff1a;显示所有的开销信息。 BLOCK IO&#xff1a;显示块…

深入理解 Golang 的 crypto/elliptic:椭圆曲线密码学的实践指南

深入理解 Golang 的 crypto/elliptic&#xff1a;椭圆曲线密码学的实践指南 引言crypto/elliptic 库概览基本使用教程高级应用案例性能与安全考量结论 引言 在当今数字时代&#xff0c;数据安全和加密技术成为了信息技术领域的重中之重。特别是在网络通信和数据存储领域&#…

使用Java实现HTTP持久连接:一次与网络的“长聊“

大家都知道&#xff0c;传统的HTTP连接就像是一次性的餐具&#xff0c;每发送一个请求&#xff0c;就得重新建立一个连接&#xff0c;然后快速用完就扔。这对于网络资源来说&#xff0c;简直就是一场"大肆挥霍"的派对。但幸好&#xff0c;我们有HTTP持久连接&#xf…

大力说视频号第三课:手把手教你视频号如何认证

视频号生态不断完善&#xff0c;越来越多的创作者认识到视频号认证的重要性。微信视频号认证不但能提升搜索排名&#xff0c;还能直播推流、与企业微信的关联等优势。 今天大力就来向大家介绍一下视频号如何做认证。 01 个人认证 个人认证又包括兴趣认证和职业认证。 A、兴趣…

华为突然官宣:新版鸿蒙系统,正式发布

华为&#xff0c;一家始终引领科技创新潮流的全球性企业&#xff0c;近日再次引发行业震动——全新HarmonyOS NEXT&#xff0c;被誉为“纯血版鸿蒙”的操作系统正式官宣。这是华为在操作系统领域迈出的坚实且具有突破性的一步&#xff0c;标志着华为正逐步摆脱对安卓生态系统的…

Ajax 详解及其使用

Ajax&#xff08;Asynchronous JavaScript and XML&#xff09;是一种在客户端与服务器之间进行异步通信的技术&#xff0c;它允许网页在不重新加载整个页面的情况下&#xff0c;与服务器交换数据并更新部分网页内容。Ajax 的核心是XMLHttpRequest&#xff08;XHR&#xff09;对…

【异常处理】word或ppt打开后没反应或闪退,或者报错由安全模式打开

折腾了2个小时&#xff0c;可算解决了&#xff0c;办法是在【控制面板】中右击&#xff0c;选择【更改】 选择联机修复&#xff0c;然后耐心等待&#xff0c;最后再打开就没问题了。

Task05:PPO算法

本篇博客是本人参加Datawhale组队学习第五次任务的笔记 【教程地址】https://github.com/datawhalechina/joyrl-book 【强化学习库JoyRL】https://github.com/datawhalechina/joyrl/tree/main 【JoyRL开发周报】 https://datawhale.feishu.cn/docx/OM8fdsNl0o5omoxB5nXcyzsInGe…

消息队列的应用场景

消息队列的应用场景 消息队列中间件是分布式系统中重要的组件&#xff0c;主要解决应用耦合&#xff0c;异步消息&#xff0c;流量削锋等问题实现高性能&#xff0c;高可用&#xff0c;可伸缩和最终一致性架构使用较多的消息队列有ActiveMQ&#xff0c;RabbitMQ&#xff0c;Ze…

vue 发布自己的npm组件

1、在项目任意位置创建index.ts文件 2、导入要到处的组件&#xff0c;使用vue提供的install 功能全局挂在&#xff1b; import GWButton from "/views/GWButton.vue"; import GWAbout from "/views/AboutView.vue";const components {GWButton,GWAbout, …

YOLOv8改进:下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列

💡💡💡本文独家改进:HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息,与传统的下采样方法相比,有效降低信息不确定性。 💡💡💡使用方法:代替原始网络的conv,下采样过程中尽可能包括更多信息,从而提升检测精度。 收录 YO…