监督学习模型是指在训练过程中,使用带有正确答案的标记数据来进行学习。常见的监督学习模型包括逻辑回归、决策树、支持向量机、朴素贝叶斯分类器、神经网络等。最近流行的监督学习模型还包括深度学习模型,如卷积神经网络和循环神经网络。
下面给出一些示例与实现方法:
逻辑回归:https://github.com/trekhleb/homemade-machine-learning
决策树:https://github.com/scikit-learn/scikit-learn
支持向量机:https://github.com/scikit-learn/scikit-learn
随机森林:https://github.com/scikit-learn/scikit-learn
GBDT:https://github.com/scikit-learn/scikit-learn
XGBoost:https://github.com/dmlc/xgboost
LightGBM:https://github.com/microsoft/LightGBM
CatBoost:https://github.com/catboost/catboost
神经网络:https://github.com/tensorflow/tensorflow
卷积神经网络:https://github.com/tensorflow/tensorflow
循环神经网络:https://github.com/tensorflow/tensorflow
双向循环神经网络:https://github.com/tensorflow/tensorflow
全连接神经网络:https://github.com/tensorflow/tensorflow
自编码器:https://github.com/tensorflow/tensorflow
聚类:https://github.com/scikit-learn/scikit-learn
K-Means:https://github.com/scikit-learn/scikit-learn
高斯混合模型:https://github.com/scikit-learn/scikit-learn
谱聚类:https://github.com/scikit-learn/scikit-learn
层次聚类:https://github.com/scikit-learn/scikit-learn
DBSCAN:https://github.com/scikit-learn/scikit-learn
这些是比较流行的监督学习模型,也是常用的机器学习算法,你可以根据你的需要来选择相应的源码。