pytorch 实现中文文本分类

news2025/1/11 7:04:53
🍨 本文为[🔗365天深度学习训练营学习记录博客

🍦 参考文章:365天深度学习训练营

🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")  # 忽略警告信息

# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

train.csv 链接:https://pan.baidu.com/s/1Vnyvo5T5eSuzb0VwTsznqA?pwd=fqok 提取码:fqok 
import pandas as pd

# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()

# 构建数据集迭代器
def coustom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y

train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])

1.构建词典:

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba

# 中文分词方法
tokenizer = jieba.lcut

def yield_tokens(data_iter):
    for text, in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

 调用vocab(词汇表)对一个中文句子进行索引转换,这个句子被分词后得到的词汇列表会被转换成它们在词汇表中的索引。

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

生成一个标签列表,用于查看在数据集中所有可能的标签类型。 

label_name = list(set(train_data[1].values[:]))
print(label_name)

 创建了两个lambda函数,一个用于将文本转换成词汇索引,另一个用于将标签文本转换成它们在label_name列表中的索引。

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)

print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

2.生成数据批次和迭代器

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]

    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))

    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)

# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)
  • collate_batch函数用于处理数据加载器中的批次。它接收一个批次的数据,处理它,并返回适合模型训练的数据格式。
  • 在这个函数内部,它遍历批次中的每个文本和标签对,将标签添加到label_list,将文本通过text_pipeline函数处理后转换为tensor,并添加到text_list
  • offsets列表用于存储每个文本的长度,这对于后续的文本处理非常有用,尤其是当你需要知道每个文本在拼接的大tensor中的起始位置时。
  • text_listtorch.cat进行拼接,形成一个连续的tensor。
  • offsets列表的最后一个元素不包括,然后使用cumsum函数在第0维计算累积和,这为每个序列提供了一个累计的偏移量。

3.搭建模型与初始化

from torch import nn

class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)

num_class = len(label_name)  # 类别数,根据label_name的长度确定
vocab_size = len(vocab)      # 词汇表的大小,根据vocab的长度确定
em_size = 64                 # 嵌入向量的维度设置为64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)  # 创建模型实例并移动到计算设备

4.模型训练及评估函数

trainevaluate分别用于训练和评估文本分类模型。

训练函数 train 的工作流程如下:

  1. 将模型设置为训练模式。
  2. 初始化总准确率、训练损失和总计数变量。
  3. 记录训练开始的时间。
  4. 遍历数据加载器,对每个批次:
    • 进行预测。
    • 清零优化器的梯度。
    • 计算损失(使用一个损失函数,例如交叉熵)。
    • 反向传播计算梯度。
    • 通过梯度裁剪防止梯度爆炸。
    • 执行一步优化器更新模型权重。
  5. 更新总准确率和总损失。
  6. 每隔一定间隔,打印训练进度和统计信息。

评估函数 evaluate 的工作流程如下:

  1. 将模型设置为评估模式。
  2. 初始化总准确率和总损失。
  3. 不计算梯度(为了节省内存和计算资源)。
  4. 遍历数据加载器,对每个批次:
    • 进行预测。
    • 计算损失。
    • 更新总准确率和总损失。
  5. 返回整体的准确率和平均损失。

代码实现:

import time

def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()

    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重

        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0

    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)

    return total_acc/total_count, total_count

5.模型训练

  • 设置训练的轮数、学习率和批次大小。
  • 定义交叉熵损失函数、随机梯度下降优化器和学习率调度器。
  • 将训练数据转换为一个map样式的数据集,并将其分成训练集和验证集。
  • 创建训练和验证的数据加载器。
  • 开始训练循环,每个epoch都会训练模型并在验证集上评估模型的准确率和损失。
  • 如果验证准确率没有提高,则按计划降低学习率。
  • 打印每个epoch结束时的统计信息,包括时间、准确率、损失和学习率。
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小

# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None

# 准备数据集
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)

split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)

    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))

print('-' * 69)

 运行结果:

| epoch   1 |    50/  152 batches | accuracy    0.423 | loss  0.03079
| epoch   1 |   100/  152 batches | accuracy    0.700 | loss  0.01912
| epoch   1 |   150/  152 batches | accuracy    0.776 | loss  0.01347
---------------------------------------------------------------------
| end of epoch   1 | time: 1.53s | valid accuracy 0.777 | valid loss 2420.000 | lr 5.000000
| epoch   2 |    50/  152 batches | accuracy    0.812 | loss  0.01056
| epoch   2 |   100/  152 batches | accuracy    0.843 | loss  0.00871
| epoch   2 |   150/  152 batches | accuracy    0.844 | loss  0.00846
---------------------------------------------------------------------
| end of epoch   2 | time: 1.45s | valid accuracy 0.842 | valid loss 2420.000 | lr 5.000000
| epoch   3 |    50/  152 batches | accuracy    0.883 | loss  0.00653
| epoch   3 |   100/  152 batches | accuracy    0.879 | loss  0.00634
| epoch   3 |   150/  152 batches | accuracy    0.883 | loss  0.00627
---------------------------------------------------------------------
| end of epoch   3 | time: 1.44s | valid accuracy 0.865 | valid loss 2420.000 | lr 5.000000
| epoch   4 |    50/  152 batches | accuracy    0.912 | loss  0.00498
| epoch   4 |   100/  152 batches | accuracy    0.906 | loss  0.00495
| epoch   4 |   150/  152 batches | accuracy    0.915 | loss  0.00461
---------------------------------------------------------------------
| end of epoch   4 | time: 1.50s | valid accuracy 0.876 | valid loss 2420.000 | lr 5.000000
| epoch   5 |    50/  152 batches | accuracy    0.935 | loss  0.00386
| epoch   5 |   100/  152 batches | accuracy    0.934 | loss  0.00390
| epoch   5 |   150/  152 batches | accuracy    0.932 | loss  0.00362
---------------------------------------------------------------------
| end of epoch   5 | time: 1.59s | valid accuracy 0.881 | valid loss 2420.000 | lr 5.000000
| epoch   6 |    50/  152 batches | accuracy    0.947 | loss  0.00313
| epoch   6 |   100/  152 batches | accuracy    0.949 | loss  0.00307
| epoch   6 |   150/  152 batches | accuracy    0.949 | loss  0.00286
---------------------------------------------------------------------
| end of epoch   6 | time: 1.68s | valid accuracy 0.891 | valid loss 2420.000 | lr 5.000000
| epoch   7 |    50/  152 batches | accuracy    0.960 | loss  0.00243
| epoch   7 |   100/  152 batches | accuracy    0.963 | loss  0.00224
| epoch   7 |   150/  152 batches | accuracy    0.959 | loss  0.00252
---------------------------------------------------------------------
| end of epoch   7 | time: 1.53s | valid accuracy 0.892 | valid loss 2420.000 | lr 5.000000
| epoch   8 |    50/  152 batches | accuracy    0.972 | loss  0.00186
| epoch   8 |   100/  152 batches | accuracy    0.974 | loss  0.00184
| epoch   8 |   150/  152 batches | accuracy    0.967 | loss  0.00201
---------------------------------------------------------------------
| end of epoch   8 | time: 1.43s | valid accuracy 0.895 | valid loss 2420.000 | lr 5.000000
| epoch   9 |    50/  152 batches | accuracy    0.981 | loss  0.00138
| epoch   9 |   100/  152 batches | accuracy    0.977 | loss  0.00165
| epoch   9 |   150/  152 batches | accuracy    0.980 | loss  0.00147
---------------------------------------------------------------------
| end of epoch   9 | time: 1.48s | valid accuracy 0.900 | valid loss 2420.000 | lr 5.000000
| epoch  10 |    50/  152 batches | accuracy    0.987 | loss  0.00117
| epoch  10 |   100/  152 batches | accuracy    0.985 | loss  0.00121
| epoch  10 |   150/  152 batches | accuracy    0.984 | loss  0.00121
---------------------------------------------------------------------
| end of epoch  10 | time: 1.45s | valid accuracy 0.902 | valid loss 2420.000 | lr 5.000000
---------------------------------------------------------------------

6.模型评估

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

7.模型测试

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()

# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"

model = model.to("cpu")

print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

 8.全部代码(部分修改):

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")  # 忽略警告信息

# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

import pandas as pd

# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()

# 构建数据集迭代器
def custom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y

train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba

# 中文分词方法
tokenizer = jieba.lcut

def yield_tokens(data_iter):
    for text,_ in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

label_name = list(set(train_data[1].values[:]))
print(label_name)

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)

print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]

    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))

    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)

# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)

from torch import nn

class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)

import time

def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()

    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重

        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0

    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)

    return total_acc/total_count, total_count

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小

# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None

# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)

split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)

    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))

print('-' * 69)

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()

# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"

model = model.to("cpu")

print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

9.代码改进及优化

9.1优化器: 尝试不同的优化算法,如Adam、RMSprop替换原来的SGD优化器部分

9.1.1使用Adam优化器:

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")  # 忽略警告信息

# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

import pandas as pd

# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()

# 构建数据集迭代器
def custom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y

train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba

# 中文分词方法
tokenizer = jieba.lcut

def yield_tokens(data_iter):
    for text,_ in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

label_name = list(set(train_data[1].values[:]))
print(label_name)

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)

print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]

    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))

    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)

# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)

from torch import nn

class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)

import time

def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()

    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重

        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0

    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)

    return total_acc/total_count, total_count

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小

# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=LR)
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None

# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)

split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)

    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))

print('-' * 69)

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()

# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"

model = model.to("cpu")

print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

 效果略差于SGD优化器

9.1.2调参:

 效果较SGD优化器提升1个百分点 

 9.1.2使用RMSprop优化器:

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")  # 忽略警告信息

# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

import pandas as pd

# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()

# 构建数据集迭代器
def custom_data_iter(texts, labels):
    for x, y in zip(texts, labels):
        yield x, y

train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba

# 中文分词方法
tokenizer = jieba.lcut

def yield_tokens(data_iter):
    for text,_ in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

label_name = list(set(train_data[1].values[:]))
print(label_name)

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)

print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]

    for (_text, _label) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即词汇的起始位置
        offsets.append(processed_text.size(0))

    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list = torch.cat(text_list)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和
    
    return text_list.to(device), label_list.to(device), offsets.to(device)

# 数据加载器,调用示例
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle=False,
                        collate_fn=collate_batch)

from torch import nn

class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
    
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
        
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)

import time

def train(dataloader):
    model.train()  # 切换到训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 50
    start_time = time.time()

    for idx, (text, label, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
        optimizer.zero_grad()  # 梯度归零
        loss = criterion(predicted_label, label)  # 计算损失
        loss.backward()  # 反向传播
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪
        optimizer.step()  # 优化器更新权重

        # 记录acc和loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:3d} | {:5d}/{:5d} batches '
                  '| accuracy {:8.3f} | loss {:8.5f}'.format(
                      epoch, idx, len(dataloader),
                      total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()  # 切换到评估模式
    total_acc, total_count = 0, 0

    with torch.no_grad():
        for idx, (text, label, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            loss = criterion(predicted_label, label)  # 计算loss
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            total_count += label.size(0)

    return total_acc/total_count, total_count

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
#EPOCHS = 10  # epoch数量
#LR = 5  # 学习速率
#BATCH_SIZE = 64  # 训练的batch大小
EPOCHS = 10  # epoch数量
LR = 0.001  # 通常Adam的学习率设置为一个较小的值,例如0.001
BATCH_SIZE = 64  # 训练的batch大小
# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=LR)
#optimizer = torch.optim.Adam(model.parameters(), lr=LR)
optimizer = torch.optim.RMSprop(model.parameters(), lr=LR)

scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None

# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)

split_train_, split_valid_ = random_split(train_dataset,
                                          [int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

# 训练循环
for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)

    # 更新学习率的策略
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| end of epoch {:3d} | time: {:4.2f}s | '
          'valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(
              epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))

print('-' * 69)

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

def predict(text, text_pipeline):
    with torch.no_grad():
        text = torch.tensor(text_pipeline(text))
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item()

# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"

model = model.to("cpu")

print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

 最佳训练结果略优于其他两种优化器

9.2使用预训练的词嵌入,如Word2Vec、GloVe或者直接使用预训练的语言模型,如BERT,作为特征提取器

在原始代码中使用预训练的词嵌入或BERT模型,需要在定义模型类TextClassificationModel之前加载嵌入,并相应地修改该类。以下是整个流程的步骤:

  • 加载预训练嵌入:

    • 如果使用Word2Vec或GloVe,加载词嵌入并创建一个嵌入层。
    • 如果使用BERT,加载BERT模型和分词器。
  • 修改模型定义:

    • 对于Word2Vec或GloVe,替换模型中的nn.EmbeddingBag为使用预训练嵌入的层。
    • 对于BERT,定义一个新的模型类,其中包含BERT模型和一个分类层。
  • 修改数据预处理:

    • 对于BERT,使用BERT分词器处理文本。
  • 更新训练和评估函数:

    • 适应BERT模型的输入格式。
  • 修改模型初始化:

    • 使用新的模型定义来创建模型实例。
9.2.1使用预训练的词嵌入

如果要使用预训练的Word2Vec或GloVe词嵌入,需要在模型定义之前加载词嵌入,并替换嵌入层,并将它们设置为模型中nn.Embedding层的初始权重。

 替换选中部分

from torchtext.vocab import GloVe

# 加载GloVe词嵌入
embedding_glove = GloVe(name='6B', dim=100)

def get_embedding(word):
    return embedding_glove.vectors[embedding_glove.stoi[word]]

# 用预训练的嵌入来替换模型中的初始权重
def create_emb_layer(weights_matrix, non_trainable=False):
    num_embeddings, embedding_dim = weights_matrix.size()
    emb_layer = nn.Embedding.from_pretrained(weights_matrix, freeze=non_trainable)
    return emb_layer

# 创建权重矩阵
weights_matrix = torch.zeros((vocab_size, em_size))
for i, word in enumerate(vocab.get_itos()):
    try:
        weights_matrix[i] = get_embedding(word)
    except KeyError:
        # 对于词汇表中不存在于GloVe的词,随机初始化一个嵌入
        weights_matrix[i] = torch.randn(em_size)

# 重写模型定义以使用预训练的嵌入
class TextClassificationModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = create_emb_layer(weights_matrix, True)  # 设置为True表示不训练嵌入
        self.fc = nn.Linear(embed_dim, num_class)
    
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)

 创建模型实例:

# 创建新的模型实例(Word2Vec/GloVe或BERT)
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)
# 或者对于BERT
# model = BertTextClassificationModel(num_class).to(device)

运行展示:

运行后自动下载GloVe嵌入截图

9.2.2 使用BERT预训练模型(同上)
from transformers import BertModel, BertTokenizer

# 加载预训练的BERT模型和分词器
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
bert_model = BertModel.from_pretrained('bert-base-chinese')

class BertTextClassificationModel(nn.Module):
    def __init__(self, num_class):
        super(BertTextClassificationModel, self).__init__()
        self.bert = bert_model
        self.fc = nn.Linear(self.bert.config.hidden_size, num_class)
    
    def forward(self, text, offsets):
        # 因为BERT需要特殊的输入格式,所以您需要在这里调整text的处理方式
        # 这里仅是一个示例,您需要根据实际情况进行调整
        inputs = bert_tokenizer(text, return_tensors='pt', padding=True, truncation=True)
        outputs = self.bert(**inputs)
        # 使用CLS标记的输出来进行分类
        cls_output = outputs.last_hidden_state[:, 0, :]
        return self.fc(cls_output)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419866.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

故障诊断 | 一文解决,CNN卷积神经网络故障诊断(Matlab)

文章目录 效果一览文章概述专栏介绍源码设计参考资料效果一览 文章概述 故障诊断 | 一文解决,CNN卷积神经网络故障诊断(Matlab) 专栏介绍 订阅【故障诊断】专栏,不定期更新机器学习和深度学习在故障诊断中的应用;订阅

自然语言nlp学习 三

4-8 Prompt-Learning--应用_哔哩哔哩_bilibili Prompt Learning&#xff08;提示学习&#xff09;是近年来在自然语言处理领域中&#xff0c;特别是在预训练-微调范式下的一个热门研究方向。它主要与大规模预训练模型如GPT系列、BERT等的应用密切相关。 在传统的微调过程中&a…

【C++】Vulkan:计算机图形学Vulkan基础与环境配置

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍计算机图形学Vulkan基础与环境配置。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&a…

pve web无法访问

一、问题描述 我这边修改了网络,导致ip发生了变更,pve网页版直接登不上了,ssh又可以登录。 二、解决方法 首先确认是不是网络的问题&#xff0c;我这边是内网&#xff0c;有多个路由器&#xff0c;笔记本连的是一个网段&#xff0c;pve又是一个网段&#xff0c;通过ping&…

Unity打包Android,jar文件无法解析的问题

Unity打包Android&#xff0c;jar无法解析的问题 介绍解决方案总结 介绍 最近在接入语音的SDK时&#xff0c;发现的这个问题. 当我默认导入这个插件的时候&#xff0c;插件内部的文件夹&#xff08;我下面话红框的文件夹&#xff09;名字原本为GCloudVoice&#xff0c;这时候我…

Spring Boot导出EXCEL 文件

主要功能:实现java导出excel到本地 JDK版本&#xff1a;openJDK 20.0.1 依赖pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchem…

Java / Spring Boot + POI 给 Word 添加水印

1、前言(瞎扯) 有个需求&#xff1a;整一个给 Word 加水印的demo&#xff0c;于是我就网上找呗~ 看到那个 Aspose 好像是收费的&#xff0c;然后就把目光转向了 POI&#xff0c;看到各种形形色色的也不知道哪个能用。整了一会&#xff0c;自己拷贝出一个比较精简的能用的 demo …

Ubuntu搭建国标平台wvp-GB28181-pro

目录 简介安装和编译1.查看操作系统信息2.安装最新版的nodejs3.安装java环境4.安装mysql5.安装redis6.安装编译器7.安装cmake8.安装依赖库9.编译ZLMediaKit9.1.编译结果说明 10.编译wvp-GB28181-pro10.1.编译结果说明 配置1.WVP-PRO配置文件1.1.Mysql数据库配置1.2.REDIS数据库…

封装通用mixins,在vue中实现a-table组件的可伸缩列(详细且使用便捷)

1、实现效果 2、使用场景 vue2 antd-vue 1.x版本由于antd-vue 1.x版本的组件库没有提供可伸缩列的功能&#xff0c;才需要我们手动开发在antd-vue 3.x版本以上的表格已经支持这个功能&#xff0c;不需要我们再去手动开发 3、话不多说&#xff0c;上代码 首先安装vue-dragga…

Android MediaCodec 简明教程(四):使用 MediaCodec 将视频解码到 Surface,并使用 SurfaceView 播放视频

系列文章目录 Android MediaCodec 简明教程&#xff08;一&#xff09;&#xff1a;使用 MediaCodecList 查询 Codec 信息&#xff0c;并创建 MediaCodec 编解码器Android MediaCodec 简明教程&#xff08;二&#xff09;&#xff1a;使用 MediaCodecInfo.CodecCapabilities 查…

白嫖!平替ChatGPT,高效阅读文档,支持pdf上传!

大家好&#xff0c;我是阿潘&#xff0c;现在技术更新的太快了&#xff0c;每天arxiv上面更新的论文太多了看不过来&#xff0c;同时还有一大堆公众号、知识星球、知乎等等&#xff0c;太多需要关注的信息了&#xff0c;力不从心啊。但是又怕漏掉一些有用的信息 因此今天跟大家…

FastBee开源物联网平台2.0开源版发布啦!!!

一、项目介绍 物美智能(wumei-smart)更名为蜂信物联(FastBee)。 FastBee开源物联网平台&#xff0c;简单易用&#xff0c;更适合中小企业和个人学习使用。适用于智能家居、智慧办公、智慧社区、农业监测、水利监测、工业控制等。 系统后端采用Spring boot&#xff1b;前端采用…

怎么把word文档转换成pdf?几种高效转换方法了解一下

怎么把word文档转换成pdf&#xff1f;在当今这个时代&#xff0c;PDF已经成为一种通用的文件格式&#xff0c;广泛应用于各种场景。将Word文档转换为PDF&#xff0c;可以确保文档的格式、字体、图片等元素在各种设备和软件上保持一致。那么&#xff0c;如何将Word文档转换为PDF…

Liunx基础-----------------------第十六章网站服务

一、概念 UI的转变&#xff1a;B/S框架 HYML&#xff1a;超文本标记语言 网页&#xff1a;使用HTML&#xff0c;PHP&#xff0c;JAVA语言格式书写的文件 主页&#xff1a;网页中呈现用户的第一个页面 网站&#xff1a;多个网页组合而成的一台网站服务器 URL&#xff1a;统…

vue3封装el-pagination分页组件

1、效果如图&#xff1a; 2、分页组件代码&#xff1a; <template><div class"paging"><el-config-provider :locale"zhCn"><el-paginationv-model:current-page"page.currentPage"v-model:page-size"page.pageSize…

【BUG】golang gorm导入数据库报错 “unexpected type clause.Expr“

帮同事排查一个gorm导入数据报错的问题 事发现场 ck sql CREATE TABLE ods_api.t_sms_jg_msg_callback_dis (app_key String DEFAULT COMMENT 应用标识,callback_type Int32 DEFAULT 0 COMMENT 0送达&#xff0c;1回执,channel Int32 DEFAULT 0 COMMENT uid下发的渠道,mode…

element ui组件 el-date-picker设置default-time的默认时间

default-time &#xff1a;选择日期后的默认时间值。 如未指定则默认时间值为 00:00:00 默认值修改 <el-form-item label"计划开始时间" style"width: 100%;" prop"planStartTime"><el-date-picker v-model"formData.planStart…

安装elasticsearch、kibana、IK分词器

1.部署单点es 1.1.创建网络 因为我们还需要部署kibana容器&#xff0c;因此需要让es和kibana容器互联。这里先创建一个网络&#xff1a; docker network create es-net 1.2.加载镜像 这里我们采用elasticsearch的7.12.1版本的镜像&#xff0c;这个镜像体积非常大&#xff0…

flutter module打包成framework引入原生工程

Flutter - 将 Flutter 集成到现有项目&#xff08;iOS - Framework篇&#xff09; 本篇文章大幅参考了 caijinglong 大佬的总结文章&#xff1a; 把flutter作为framework添加到已存在的iOS中[1] 用 Flutter 来开发&#xff0c;从来都不可能是新开的一个纯 Flutter 项目&#xf…

vite+vue3 使用svg icon(包括element-plus icon)

1、安装依赖 npm i element-plus/icons-vue -S npm i vite-plugin-svg-icons -D2、在vite.config.ts文件中 import path from path; import { createSvgIconsPlugin } from vite-plugin-svg-icons; // 版本不同引入方式不同 export default defineConfig({...plugins: [...cr…