Prompt Learning 的几个重点paper

news2024/11/17 14:38:39

Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation

在输入token之前构造一段任务相关的virtual tokens作为Prefix,然后训练的时候只更新Prefix部分的参数,PLM中的其他参数固定。针对自回归架构模型:在句子前面添加前缀,针对编码器-解码器架构模型:Encoder和Decoder都增加了前缀,得到 z = [PREFIX; x; PREFIX0; y]。Encoder端增加前缀是为了引导输入部分的编码,Decoder 端增加前缀是为了引导后续token的生成。该方法其实和构造Prompt类似,只是Prompt是人为构造的“显式”的提示,并且无法更新参数,而Prefix则是可以学习的“隐式”的提示。为了防止直接更新Prefix的参数导致训练不稳定和性能下降的情况,在Prefix层前面加了MLP结构,训练完成后,只保留Prefix的参数。通过消融实验证实,只调整embedding层的表现力不够,将导致性能显著下降,因此,在每层都加了prompt的参数。实验还对比了位置对于生成效果的影响,Prefix-tuning也是要略优于Infix-tuning的。其中,Prefix-tuning形式为 [PREFIX; x; y],Infix-tuning形式为 [x; INFIX; y]

Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

该方法可以看作是Prefix Tuning的简化版本,它给每个任务定义了自己的Prompt,然后拼接到数据上作为输入,但只在输入层加入prompt tokens,并且不需要加入 MLP 进行调整来解决难训练的问题。Prompt Tuning 还提出了 Prompt Ensembling,也就是在一个批次(Batch)里同时训练同一个任务的不同 prompt(即采用多种不同方式询问同一个问题),这样相当于训练了不同模型,比模型集成的成本小多了。

P-Tuning: GPT Understands, Too

清华;针对Prompt Tuning的改进,该方法将Prompt转换为可以学习的Embedding层,并用MLP+LSTM的方式来对Prompt Embedding进行一层处理。相比Prefix Tuning,P-Tuning加入的可微的virtual token,但仅限于输入层,没有在每一层都加;另外,virtual token的位置也不一定是前缀,插入的位置是可选的。

P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks

清华;针对Prefix Tuning的改进;该方法在每一层都加入了Prompts tokens作为输入,而不是仅仅加在输入层。移除重参数化的编码器(以前的方法利用重参数化功能来提高训练速度和鲁棒性如:Prefix Tuning 中的 MLP 、P-Tuning 中的 LSTM,但这里作者发现重参数化的改进很小,还会影响模型的表现)。针对不同任务采用不同的提示长度。引入多任务学习。回归传统的分类标签范式,而不是映射器(P-Tuning v2回归传统的CLS标签分类范式,采用随机初始化的分类头(Classification Head)应用于tokens之上)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp瀑布流实现

1. 图片瀑布流&#xff1a; 不依赖任何插件&#xff0c;复制即可见效&#xff1a; <template><view class"page"><view class"left" ref"left"><image class"image" v-for"(item,i) in leftList" :k…

ASP.NET Core 过滤器 使用依赖项注入

过滤器是 ASP.NET Core 中的特殊组件&#xff0c;允许我们在请求管道的特定阶段控制请求的执行。这些过滤器在中间件执行后以及 MVC 中间件匹配路由并调用特定操作时发挥作用。 简而言之&#xff0c;过滤器提供了一种在操作级别自定义应用程序行为的方法。它们就像检查点&#…

Idea设置代理后无法clone git项目

背景 对于我们程序员来说&#xff0c;经常上github找项目、找资料是必不可少的&#xff0c;但是一些原因&#xff0c;我们访问的时候速度特别的慢&#xff0c;需要有个代理&#xff0c;才能正常的访问。 今天碰到个问题&#xff0c;使用idea工具 clone项目&#xff0c;速度特…

三、防御保护---防火墙安全策略篇

三、防御保护---防火墙安全策略篇 一、什么是安全策略二、安全策略的组成1.匹配条件2.动作3.策略标识 三、防火墙的状态检测和会话表1.会话表2.状态检测技术 四、ASPF--隐形通道五、用户认证1.用户认证的分类2.认证方式3.认证策略4.认证域 一、什么是安全策略 传统的包过滤防火…

计算机毕业设计 基于SpringBoot的车辆违章信息管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

Android 中的动态应用程序图标

Android 中的动态应用程序图标 一、需求二、解决方案三、方案实现四、结论 一、需求 您可能遇到过那些可以实现巧妙技巧的应用程序 - 更改应用程序图标&#xff08;也许是在您的生日那天&#xff09;&#xff0c;然后无缝切换回常规图标。这种功能会激起你的好奇心&#xff0c…

websocket 通信协议

websocket是什么 答: 它是一种网络通信协议&#xff0c;是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 意思就是服务器可以主动向客户端推送信息&#xff0c;客户端也可以主动向服务器发送信息 属于服务器推送技术的一种. 为什么需要websocket? 疑问?…

Java 面试题之 IO(一)

字节流 文章目录 字节流InputStream&#xff08;字节输入流&#xff09;OutputStream&#xff08;字节输出流&#xff09; 文章来自Java Guide 用于学习如有侵权&#xff0c;立即删除 InputStream&#xff08;字节输入流&#xff09; InputStream用于从源头&#xff08;通常是…

【command】使用nr简化npm run命令

参考文章 添加 alias nrnpm run通过alias启动命令可以帮助我们节省运行项目输入命令的时间 $ cd ~ $ vim .bash_profile $ source ~/.bashrc

【51单片机Keil+Proteus8.9】门锁控制电路

门锁控制电路 二、设计思路 电路设计 1.电源部分&#xff1a;使用BATTERY为整个电路提供电源&#xff0c;可以在电路中加入一个电 源开关&#xff0c;以便控制电源的开启和关闭。 2.处理器部分&#xff1a;使用AT89C51芯片作为主处理器&#xff0c;通过编写程序实现门锁的 …

【Java IO 源码详解】: InputStream

本文主要从JDK 11 源码角度分析InputStream。 Java IO - 源码: InputStream InputStream 类实现关系InputStream 抽象类源码实现InputStreamFilterInputStreamByteArrayInputStreamBufferedInputStream 参考文章 InputStream 类实现关系 InputStream是输入字节流&#xff0c;具…

来聊聊大厂面试题:求Java对象的大小

写在文章开头 日常使用Java进行业务开发时&#xff0c;我们基本不关心一个Java对象的大小&#xff0c;所以经常因为错误的估算导致大量的内存空间在无形之间被浪费了&#xff0c;所以今天笔者就基于这篇文章来聊聊一个Java对象的大小。 你好&#xff0c;我叫sharkchili&#x…

网络体系结构 和网络原理之UDP和TCP

目录 网络分层 一. 应用层 http协议 二. 传输层 1. 介绍 2.UDP协议 (1)组成 (2)细节 3.TCP协议 (1)特性如下链接&#xff1a; (2)组成 (3)特点 三. 网络层 四. 数据链路层 1.介绍 2.以太网协议 3.mac地址和ip地址 五. 物理层 DNS 网络分层 一. 应用层 应用程序 现成的…

【深度优先搜索】【组合数学】【动态规划】1467.两个盒子中球的颜色数相同的概率

作者推荐 【动态规划】【字符串】【行程码】1531. 压缩字符串 本文涉及知识点 动态规划汇总 深度优先搜索 组合数学 LeetCode1467 两个盒子中球的颜色数相同的概率 桌面上有 2n 个颜色不完全相同的球&#xff0c;球上的颜色共有 k 种。给你一个大小为 k 的整数数组 balls …

数据写入HBase(scala)

package sourceimport org.apache.hadoop.hbase.{HBaseConfiguration, TableName} import org.apache.hadoop.hbase.client.{ConnectionFactory, Put} import org.apache.hadoop.hbase.util.Bytesobject ffff {def main(args: Array[String]): Unit {//hbase连接配置val conf …

c++连接mysql

c连接mysql 安装mysql以及c对应的库进入数据库&#xff0c;创建数据库&#xff0c;表&#xff0c;并新建管理员用户编写c代码编译运行&#xff0c;测试结果头文件解释 安装mysql以及c对应的库 sudo apt-get update sudo apt-get install mysql-server sudo apt-get install li…

2023年算法CDO-CNN-BiLSTM-ATTENTION回归预测(matlab)

2023年算法CDO-CNN-BiLSTM-ATTENTION回归预测&#xff08;matlab&#xff09; CDO-CNN-BiLSTM-Attention切诺贝利灾难优化器优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 切诺贝利灾难优化器Chernobyl Disaster Optimizer (CDO)是H. Shehadeh于202…

新书推荐——《趣读数字经济》

文章目录 缘起:“躺嬴”的一天/ 001 第1章 名花解语,石心铁肠&#xff0c;当属“人工智能”/ 009 1.1 自学成才的人工智能/ 011 1.2 狂飙的话病ChatGPT / 017 1.3 算力、算法与数据:人工智能的核心/ 026 1.4 人工智能会抢走我们的饭碗吗/032 1.5 人工智能有多能/ 036 1.6 AI…

地址解析工具---AddressParseUtil

一、工具源码 package com.rural_vibration.common.utils;import java.util.Iterator; import java.util.LinkedHashMap; import java.util.Map; import java.util.Set; import java.util.regex.Matcher; import java.util.regex.Pattern;/*** description: 地址解析工具 <…

FTP服务之WindowsServer2019中搭建私有FTP服务器

WindowsServer2019搭建FTP服务器 文章目录 WindowsServer2019搭建FTP服务器1. 查看FTP服务是否开启2. 配置FTP服务站点3. 访问 1. 查看FTP服务是否开启 WindowsServer2019默认是开启FTP服务的&#xff0c;如果未开启&#xff0c;则按下面步骤开启即可 打开服务器管理 添加角色和…