基于YOLOv8的摄像头吸烟行为检测系统(Python源码+Pyqt6界面+数据集)

news2024/11/18 11:31:22

💡💡💡本文主要内容:详细介绍了摄像头下吸烟行为检测系统,在介绍算法原理的同时,给出Pytorch的源码、训练数据集以及PyQt6的UI界面。在界面中可以选择各种图片、视频进行检测识别,可进行置信度、Iou阈值设定,结果可视化等。

1.数据集介绍

通过摄像头采集吸烟行为,共采集1812张图片 进行标注,按照8:1:1进行训练集、验证集、测试集随机区分。

细节图如下: 

 1.1数据集划分

通过split_train_val.py得到trainval.txt、val.txt、test.txt  

# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 0.9
train_percent = 0.8
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

 1.2  通过voc_label.py生成txt

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val']
classes = ["smoke"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('labels/'):
        os.makedirs('labels/')
    image_ids = open('ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

通过图像判断属于小目标检测

1.3 小目标定义


1)以物体检测领域的通用数据集COCO物体定义为例,小目标是指小于32×32个像素点(中物体是指32*32-96*96,大物体是指大于96*96);
2)在实际应用场景中,通常更倾向于使用相对于原图的比例来定义:物体标注框的长宽乘积,除以整个图像的长宽乘积,再开根号,如果结果小于3%,就称之为小目标;

2.基于YOLOv8的摄像头吸烟行为检测

2.1 修改smoke.yaml


path: ./ultralytics-smoke/data/smoke # dataset root dir
train: train.txt  # train images (relative to 'path') 118287 images
val: val.txt  # val images (relative to 'path') 5000 images
 
# number of classes
nc: 1
 
# class names
names:
  0: smoke

2.2开启训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/smoke/smoke.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                batch=16,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                # resume='', # last.pt path
                # amp=False # close amp
                # fraction=0.2,
                project='runs/train',
                name='exp',
                )

 

3.训练结果分析

Validating runs\train\exp\weights\best.pt...
Ultralytics YOLOv8.1.2 🚀 Python-3.8.18 torch-1.11.0+cu113 CUDA:0 (NVIDIA GeForce RTX 3070, 8192MiB)
YOLOv8 summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 11/11 [00:09<00:00,  1.22it/s]
                   all        326        402      0.901      0.813      0.902      0.519
Speed: 0.2ms preprocess, 2.3ms inference, 0.0ms loss, 0.7ms postprocess per image
Results saved to runs\train\exp

 

confusion_matrix.png :列代表预测的类别,行代表实际的类别。其对角线上的值表示预测正确的数量比例,非对角线元素则是预测错误的部分。混淆矩阵的对角线值越高越好,这表明许多预测是正确的。

 上图是摄像头吸烟行为检测训练,有图可以看出 ,分别是smoke和background FP。该图在每列上进行归一化处理。则可以看出破损检测预测正确的概率为82%。

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 labels_correlogram.jpg :显示数据的每个轴与其他轴之间的对比。图像中的标签位于 xywh 空间。

 labels.jpg :

(1,1)表示每个类别的数据量

(1,2)真实标注的 bounding_box

(2,1) 真实标注的中心点坐标

(2,2)真实标注的矩阵宽高

 P_curve.png:表示准确率与置信度的关系图线,横坐标置信度。由下图可以看出置信度越高,准确率越高。

 PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 R_curve.png :召回率与置信度之间关系

 results.png

 mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

 预测结果:

 4. 摄像头吸烟行为检测系统设计

4.1 PySide6介绍

        受益于人工智能的崛起,Python语言几乎以压倒性优势在众多编程语言中异军突起,成为AI时代的首选语言。在很多情况下,我们想要以图形化方式将我们的人工智能算法打包提供给用户使用,这时候选择以python为主的GUI框架就非常合适了。

        PySide是Qt公司的产品,PyQt是第三方公司的产品,二者用法基本相同,不过在使用协议上却有很大差别。PySide可以在LGPL协议下使用,PyQt则在GPL协议下使用。

        PySide目前常见的有两个版本:PySide2和PySide6。PySide2由C++版的Qt5开发而来.,而PySide6对应的则是C++版的Qt6。从PySide6开始,PySide的命名也会与Qt的大版本号保持一致,不会再出现类似PySide2对应Qt5这种容易混淆的情况。

4.2 安装PySide6

pip install --upgrade pip
pip install pyside6 -i https://mirror.baidu.com/pypi/simple

基于PySide6开发GUI程序包含下面三个基本步骤:

  • 设计GUI,图形化拖拽或手撸;
  • 响应UI的操作(如点击按钮、输入数据、服务器更新),使用信号与Slot连接界面和业务;
  • 打包发布;

 4.3 摄像头吸烟行为检测系统设计

运行

python main.py

关注下方名片,即可获取源码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【linux】磁盘空间不足-常用排查和处理命令

【linux】磁盘空间不足-常用排查和处理命令 1.通查一下 df -h #查看服务器磁盘空间情况 du -hs * 2>/dev/null #列出各目录所占空间大小 或 du -h -d 1 2>/dev/null #列出各目录所占空间大小 1.1情况一 df 磁盘空间和du 目录空间占用相等&#xff0c…

离线安装nginx_银河麒麟系统_nginx报错_503_500 Internal Server Error----nginx工作笔记007

如果报这个错误,意思就是,对于nginx.conf文件中指定的,文件夹没有权限 那么这个是去给对应的文件夹赋权限: chmod 777 /opt/module/test_web 就可以了,然后再去访问就不会报错了,还有 503的错误都可以这样解决 然后关于离线安装nginx,尝试了一下如果把之前安装过的nginx,直接…

app逆向-frida定位签名校验

文章目录 一、前言二、如何实现签名校验三、案例&#xff1a;定位签名校验 一、前言 当我们说应用签名校验时&#xff0c;实际上是一种安全机制&#xff0c;用于确保移动应用在被安装和运行时没有被篡改或修改。这个机制通过在应用程序文件上附加一种数字签名的方式来实现。 …

2023年算法GWCA -CNN-BiLSTM-ATTENTION回归预测(matlab)

2023年算法GWCA -CNN-BiLSTM-ATTENTION回归预测&#xff08;matlab&#xff09; GWCA -CNN-BiLSTM-Attention长城建造算法优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 长城建造算法&#xff08;Great Wall Construction Algorithm&#xff0c;GWC…

Centos Cron设置定时任务

这本是很简单的问题&#xff0c;但是我服务器重装系统两次&#xff0c;遇到的问题都不一样&#xff0c;所以记录一下 1.首先要确保服务器上有 cron 服务 sudo systemctl status crond2.设置时区 sudo timedatectl set-timezone Asia/Shanghai3.重启crond 服务使crond服务的时…

指针的深入理解(一)

这一节主要复习数组指针&#xff0c;int (* )[ ] 就是数组指针类型的标志。 因为有&#xff08;&#xff09;将*括起来&#xff0c;所以&#xff08;*&#xff09;表示一个指针。[ ] 表示数组&#xff0c;所以&#xff08;*&#xff09;[ ]就表示一个指向数组的指针&#xff…

【C++】I/O多路转接详解(一)

目录 1. 背景引入1.1 IO的过程1.2 五种IO模型1.2.1 阻塞IO1.2.2 非阻塞IO1.2.3 信号驱动IO1.2.4 IO多路转接1.2.5 异步IO 1.3 同步通信 与 异步通信1.4 阻塞 与 非阻塞1.4.1 阻塞与非阻塞区别1.4.2 设置非阻塞IO 2. select2.1 接口使用2.2 select执行过程2.3 select代码实践 3.…

C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列

给定 n 个 0 和 n 个 1 &#xff0c;它们将按照某种顺序排成长度为 2n 的序列&#xff0c;求它们能排列成的所有序列中&#xff0c;能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列有多少个。 输出的答案对 1097 取模。 输入格式 共一行&#xff0c;包含整数 n 。 …

开源大规模分布式MQTT消息服务器EMQX部署教程

1.EMQX是什么&#xff1f; EMQX 是一款开源的大规模分布式 MQTT 消息服务器&#xff0c;功能丰富&#xff0c;专为物联网和实时通信应用而设计。EMQX 5.0 单集群支持 MQTT 并发连接数高达 1 亿条&#xff0c;单服务器的传输与处理吞吐量可达每秒百万级 MQTT 消息&#xff0c;并…

数据结构----链表介绍、模拟实现链表、链表的使用

文章目录 1. ArrayList存在的问题2. 链表定义2.1 链表的概念及结构2.2 链表的组合类型 3. 链表的实现3.1 单向、不带头、非循环链表的实现3.2 双向、不带头节点、非循环链表的实现 4.LinkedList的使用4.1 什么是LinkedList4.2 LinkedList的使用4.2.1. LinkedList的构造4.2.2. L…

R语言(数据导入,清洗,可视化,特征工程,建模)

记录一下痛失的超级轻松的数据分析实习&#xff08;线上&#xff09;&#xff0c;hr问我有没有相关经历&#xff0c;我说我会用jupyter book进行数据导入&#xff0c;清洗&#xff0c;可视化&#xff0c;特征工程&#xff0c;建模&#xff0c;python学和用的比较多&#xff0c;…

burp靶场--xss上篇【1-15】

burp靶场–xss https://portswigger.net/web-security/cross-site-scripting 1. 什么是xss: 跨站脚本 (XSS) 是一种通常出现在 Web 应用程序中的计算机安全漏洞。XSS 允许攻击者将恶意代码注入网站&#xff0c;然后在访问该网站的任何人的浏览器中执行该代码。这可能允许攻击…

【重磅发布】已开放!模型师入驻、转格式再升级、3D展示框架全新玩法…

1月23日&#xff0c;老子云正式发布全新版本。此次新版本包含多板块功能上线和升级&#xff0c;为用户带来了含模型师入驻、三维格式在线转换升级、模型免费增值权益开放、全新3D展示框架等一系列精彩内容&#xff01; 1月23日&#xff0c;老子云正式发布全新版本。此次新版本…

【开源】基于JAVA语言的班级考勤管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统基础支持模块2.2 班级学生教师支持模块2.3 考勤签到管理2.4 学生请假管理 三、系统设计3.1 功能设计3.1.1 系统基础支持模块3.1.2 班级学生教师档案模块3.1.3 考勤签到管理模块3.1.4 学生请假管理模块 3.2 数据库设…

PyTorch自动微分机制的详细介绍

PyTorch深度学习框架的官方文档确实提供了丰富的信息来阐述其内部自动微分机制。在PyTorch中&#xff0c;张量&#xff08;Tensor&#xff09;和计算图&#xff08;Computation Graph&#xff09;的设计与实现使得整个系统能够支持动态的、高效的自动求导过程。 具体来说&#…

BL808学习日志-3-DPI-RGB屏幕使用-LVGL D0

一、DPI-RGB驱动 BL808的手册上显示是支持RGB565屏幕显示输出的&#xff0c;但是一直没找到网上的使用例程。且官方的SDK显示也是能够使用的&#xff0c;只是缺少了驱动。这一部分驱动在SIPEED的SDK中已经内置了&#xff0c;今天就是简单的点亮一个800*480 RGB565的屏幕。 二、…

第十一篇【传奇开心果系列】BeeWare的Toga开发移动应用示例:Briefcase和Toga 哥俩好

传奇开心果博文系列 系列博文目录BeeWare的Toga开发移动应用示例系列博文目录一、前言二、Briefcase和toga各自的主要功能分别介绍三、使用Toga 开发移动应用Briefcase工具是最佳拍档四、Briefcase搭档Toga创建打包发布联系人移动应用示例代码五、运行测试打包发布六、归纳总结…

OpenHarmony—ArkTS限制throw语句中表达式的类型

规则&#xff1a;arkts-limited-throw 级别&#xff1a;错误 ArkTS只支持抛出Error类或其派生类的实例。禁止抛出其他类型&#xff08;例如number或string&#xff09;的数据。 TypeScript throw 4; throw ; throw new Error();ArkTS throw new Error();限制省略函数返回类…

Codeforces Round 799 (Div. 4)

目录 A. Marathon B. All Distinct C. Where’s the Bishop? D. The Clock E. Binary Deque F. 3SUM G. 2^Sort H. Gambling A. Marathon 直接模拟 void solve() {int ans0;for(int i1;i<4;i) {cin>>a[i];if(i>1&&a[i]>a[1]) ans;}cout<&l…

欧拉角及Eigen库中eulerAngles函数的理解

欧拉角方向 以右手坐标系为例&#xff0c;大拇指表示X轴&#xff0c;食指表示Y轴&#xff0c;中指表示Z轴。 大拇指朝向某个轴的正方向&#xff0c;手掌弯曲的方向即为某个轴欧拉角的正方向。 Eigen库中eulerAngles函数 旋转矩阵转欧拉角(Z-Y-X&#xff0c;即RPY&#xff09…