Vim实战:使用Vim实现图像分类任务(一)

news2024/11/18 18:34:57

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 编译安装Vim环境
    • 环境
    • 安装过程
      • 安装库文件
  • 计算mean和std
  • 生成数据集

摘要

论文:https://arxiv.org/pdf/2401.09417v1.pdf
翻译:
近年来,随着深度学习的发展,视觉模型在许多任务中取得了显著的成功。然而,随着模型规模和复杂度的增加,计算和内存的消耗也急剧增长。这限制了模型在资源有限的环境中的使用,尤其是在处理高分辨率图像时。为了解决这个问题,一种新的视觉模型架构——Vim(Vision with Mamba)被提出。
Vim是一种基于状态空间模型(SSM)的视觉模型,利用了Mamba这种高效的硬件设计。SSM是一种动态系统模型,用于描述状态随时间的变化。Mamba则是针对SSM的一种硬件优化设计,可以提高计算效率和降低内存消耗。Vim通过将图像序列标记为位置嵌入,并使用双向SSM压缩视觉表示,从而实现了高效的视觉表示学习。
与传统的视觉模型相比,Vim具有更高的计算和内存效率。在ImageNet分类、COCO物体检测和ADE20K语义分割等任务上的实验表明,Vim的性能优于现有的视觉转换器模型,如DeiT。同时,Vim还具有更低的计算和内存消耗。例如,在批量推理时,Vim可以比DeiT快2.8倍,并节省86.8%的GPU内存,这使得它能够有效地处理高分辨率图像。
在这里插入图片描述

Vim作为一种高效的视觉模型,具有计算和内存效率高、处理高分辨率图像能力强等优点。这使得Vim成为下一代视觉基础模型的理想选择。

本文使用Vim模型实现图像分类任务,模型选择最小的vim_tiny_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_rope_also_residual_with_cls_token(这个方法的名字比较长。。。。。),在植物幼苗分类任务ACC达到了97%+。

请添加图片描述

请添加图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现Vim模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn

_logger = logging.getLogger(__name__)

class ModelEma:
    def __init__(self, model, decay=0.9999, device='', resume=''):
        # make a copy of the model for accumulating moving average of weights
        self.ema = deepcopy(model)
        self.ema.eval()
        self.decay = decay
        self.device = device  # perform ema on different device from model if set
        if device:
            self.ema.to(device=device)
        self.ema_has_module = hasattr(self.ema, 'module')
        if resume:
            self._load_checkpoint(resume)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def _load_checkpoint(self, checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        assert isinstance(checkpoint, dict)
        if 'state_dict_ema' in checkpoint:
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict_ema'].items():
                # ema model may have been wrapped by DataParallel, and need module prefix
                if self.ema_has_module:
                    name = 'module.' + k if not k.startswith('module') else k
                else:
                    name = k
                new_state_dict[name] = v
            self.ema.load_state_dict(new_state_dict)
            _logger.info("Loaded state_dict_ema")
        else:
            _logger.warning("Failed to find state_dict_ema, starting from loaded model weights")

    def update(self, model):
        # correct a mismatch in state dict keys
        needs_module = hasattr(model, 'module') and not self.ema_has_module
        with torch.no_grad():
            msd = model.state_dict()
            for k, ema_v in self.ema.state_dict().items():
                if needs_module:
                    k = 'module.' + k
                model_v = msd[k].detach()
                if self.device:
                    model_v = model_v.to(device=self.device)
                ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:
     model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device='cpu',
            resume=resume)

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    if model_ema is not None:
        model_ema.update(model)


# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

Vim_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─models_mamba.py
│  └─rope.py
├─vim_tiny_73p1.pth
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练RevCol模型
models:来源官方代码,对面的代码做了一些适应性修改。
vim_tiny_73p1.pth:预训练权重

编译安装Vim环境

环境

系统:ubuntu22.04
CUDA:12.1
python:3.11
显卡驱动:545
在这里插入图片描述

安装过程

系统、CUDA和python的安装过程忽略,这些都能找到。

安装库文件

下载https://github.com/hustvl/Vim源码。
进入vim中,找到vim_requirements.txt文件,如下图:
在这里插入图片描述打开vim_requirements.txt文件,按照要求安装缺失的库文件,如下:

addict==2.4.0
aiohttp==3.9.1
aiosignal==1.3.1
alembic==1.13.0
async-timeout==4.0.3
attrs==23.1.0
blinker==1.7.0
# causal-conv1d @ file:///home/zhulianghui/VisionProjects/mamba/lib/causal_conv1d-1.0.0%2Bcu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl#sha256=79a4bab633ebff031e615d5e8ba396b0dc0c046f4406980ee238fb86a9090038
certifi==2023.11.17
charset-normalizer==3.3.2
click==8.1.7
cloudpickle==3.0.0
contourpy==1.2.0
cycler==0.12.1
databricks-cli==0.18.0
datasets==2.15.0
dill==0.3.7
docker==6.1.3
einops==0.7.0
entrypoints==0.4
filelock==3.13.1
Flask==3.0.0
fonttools==4.46.0
frozenlist==1.4.0
fsspec==2023.10.0
gitdb==4.0.11
GitPython==3.1.40
greenlet==3.0.2
gunicorn==21.2.0
huggingface-hub==0.19.4
idna==3.6
importlib-metadata==7.0.0
itsdangerous==2.1.2
Jinja2==3.1.2
joblib==1.3.2
kiwisolver==1.4.5
Mako==1.3.0
# mamba-ssm @ file:///home/zhulianghui/VisionProjects/mamba/lib/mamba_ssm-1.0.1%2Bcu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl#sha256=71ad1b1eafb05a6e8a41fd82e046fe85511d6378fa3a583e55215b6aa1d65ab9
Markdown==3.5.1
MarkupSafe==2.1.3
matplotlib==3.8.2
mlflow==2.9.1
mmcv==1.3.8
mmsegmentation==0.14.1
mpmath==1.3.0
multidict==6.0.4
multiprocess==0.70.15
networkx==3.2.1
ninja==1.11.1.1
numpy==1.26.2
# nvidia-cublas-cu12==12.1.3.1
# nvidia-cuda-cupti-cu12==12.1.105
# nvidia-cuda-nvrtc-cu12==12.1.105
# nvidia-cuda-runtime-cu12==12.1.105
# nvidia-cudnn-cu12==8.9.2.26
# nvidia-cufft-cu12==11.0.2.54
# nvidia-curand-cu12==10.3.2.106
# nvidia-cusolver-cu12==11.4.5.107
# nvidia-cusparse-cu12==12.1.0.106
# nvidia-nccl-cu12==2.18.1
# nvidia-nvjitlink-cu12==12.3.101
# nvidia-nvtx-cu12==12.1.105
oauthlib==3.2.2
opencv-python==4.8.1.78
packaging==23.2
pandas==2.1.3
Pillow==10.1.0
platformdirs==4.1.0
prettytable==3.9.0
protobuf==4.25.1
pyarrow==14.0.1
pyarrow-hotfix==0.6
PyJWT==2.8.0
pyparsing==3.1.1
python-dateutil==2.8.2
python-hostlist==1.23.0
pytz==2023.3.post1
PyYAML==6.0.1
querystring-parser==1.2.4
regex==2023.10.3
requests==2.31.0
safetensors==0.4.1
scikit-learn==1.3.2
scipy==1.11.4
six==1.16.0
smmap==5.0.1
SQLAlchemy==2.0.23
sqlparse==0.4.4
sympy==1.12
tabulate==0.9.0
threadpoolctl==3.2.0
timm==0.4.12
tokenizers==0.15.0
tomli==2.0.1
# torch==2.1.1+cu118
# torchvision==0.16.1+cu118
tqdm==4.66.1
transformers==4.35.2
triton==2.1.0
typing_extensions==4.8.0
tzdata==2023.3
urllib3==2.1.0
wcwidth==0.2.12
websocket-client==1.7.0
Werkzeug==3.0.1
xxhash==3.4.1
yapf==0.40.2
yarl==1.9.4
zipp==3.17.0

进入causal-conv1d文件夹,如下图:
在这里插入图片描述
执行命令:

pyhton setup.py install

进入mamba文件夹下面,如下图:
在这里插入图片描述
执行命令:

pyhton setup.py install

最终就可以完成编译了!

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())

if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419283.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

适用于 Mac 的 9 款最佳数据恢复软件列表

查看 2024 年 Mac 最佳数据恢复软件的完整列表,并随时恢复您想要的任何类型的数据。 “我们只是人类,我们应该犯错误”。这句话适用于生活的各个方面。错误是会发生的,正是错误使你成为人。 您可以使用 Mac 在线传输内容、上网、工作、玩游…

在Mixamo网站上,下载的动画导入unity给自己的模型添加后出错怎么解决

在Mixamo网站上,下载的动画导入unity给自己的模型添加后出错 一、在Mixamo下载的模型可以正常使用二、在自己的模型和unity自带模型上就出错1.解决方法2.解决成功 注意 一、在Mixamo下载的模型可以正常使用 二、在自己的模型和unity自带模型上就出错 1.解决方法 选…

asp.net core监听本地ip地址

开发asp.net core的时候遇到一个问题我想提供访问供其他同事测试,但是默认都是localhost或者127.0.0.1。我想换成我的Ip地址访问但是不行,百度搜索需要更换监听的地址即修改launchSettings.json,修改为0.0.0.0:5248,这样不管local…

数据结构——用Java实现二分搜索树

目录 一、树 二、二分搜索树 1.二叉树 2.二分搜索树 三、代码实现 1.树的构建 2.获取树中结点的个数 3.添加元素 4.查找元素 (1)查找元素是否存在 (2)查找最小元素 (3)查找最大元素 5.二分搜索…

数字美妆技术:美颜SDK和动态贴纸技术的崭新时代

数字美妆的兴起标志着人们对于自身形象的追求不再局限于现实生活,而是延伸到了虚拟世界。同时,美颜SDK的动态贴纸技术也开始进入到大家的视野之中。 一、美颜SDK:技术之作 通过复杂的图像处理算法,美颜SDK能够实时检测人脸&…

Lua语法基本使用

🍓 简介:java系列技术分享(👉持续更新中…🔥) 🍓 初衷:一起学习、一起进步、坚持不懈 🍓 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正🙏 🍓 希望这篇文章对你有所帮助,欢…

【网络基础】IP

IP协议报头 4位版本号(version): 指定IP协议的版本, 对于IPv4来说, 就是4.4位头部长度(header length): IP头部的长度是多少个32bit, 也就是 length * 4 的字节数. 4bit表示最大的数字是15, 因此IP头部最大长度是60字节. 8位服务类型(Type Of Service): 3位优先权字段(已经弃用…

网络空间搜索引擎

随着互联网、物联网、传感网、社交网络等信息系统所构成的泛在网络不断 发展,网络终端设备数量呈指数级上升。这为企业进行终端设备资产清点和统一 管控带来了巨大挑战,同时也引发了一系列安全问题,网络攻击与防御的博弈从 单边代码漏洞发展到…

SpringMVC 自动配置

SpringMVC 自动配置 一、WebMvcAutoConfiguration(SpringMVC自动配置)二、DisPatcherServletAutoConfiguration.class(中央调度器自动配置)三、WebMvcConfigurationSupport(SpringMVC组件配置类)四、Servle…

RHCE 搭建DNS域名解析服务器

目录 一、前述 1、BIND(Berkeley Internet Name Domain) 2、bind服务中三个关键文件 1)主配置文件/etc/named.conf 2)区域配置文件/etc/named.rfc1912.zones 正向解析 反向解析 3)数据配置文件目录/var/named/…

STM32 1-5

目录 STM32简介 点亮PC13LED GPIO LED闪烁 LED流水灯 按键控制LED 光敏传感器控制蜂鸣器 OLED调试工具 OLED显示 EXTI外部中断 对射式红外传感器计次 旋转编码器计次 继续 STM32简介 点亮PC13LED main.c #include "stm32f10x.h" // D…

Hadoop-MapReduce-YarnChild启动篇

一、源码下载 下面是hadoop官方源码下载地址&#xff0c;我下载的是hadoop-3.2.4&#xff0c;那就一起来看下吧 Index of /dist/hadoop/core 二、上下文 在上一篇<Hadoop-MapReduce-MRAppMaster启动篇>中已经将到&#xff1a;MRAppMaster的启动&#xff0c;那么运行M…

如何让wordpress首页只显示某一篇文章全部内容?在您的主页显示选择

大多数WordPress站点首页默认都是显示最新发布的文章列表&#xff0c;不过有些站点比较特殊&#xff0c;只想显示某一篇文章的全部内容&#xff0c;那么应该怎么设置呢&#xff1f; 其实&#xff0c;WordPress后台 >> 设置 >> 阅读 >> 在“您的主页显示”中…

VS+QT 配置Eigen库

1、下载Eigen库&#xff0c;如下&#xff1a; 2、解压到项目目录下&#xff0c;如下&#xff1a; 3、 在C/C中包含文件&#xff0c;如下&#xff1a; 4、在头文件中加入如下代码&#xff1a; 5、测试代码&#xff1a; //.cpp文件 #include "testEigen.h"testEigen::…

【Python】03快速上手爬虫案例三:搞定药师帮

文章目录 前言1、破解验证码2、获取数据 前言 流程&#xff1a;通过用户名、密码、搞定验证码&#xff0c;登录进药师帮网站&#xff0c;然后抓取想要的数据。 爬取数据&#xff0c;最终效果图&#xff1a; 1、破解验证码 使用药师帮测试系统&#xff1a;https://dianrc.ysb…

快速入门存内计算—助力人工智能加速深度学习模型的训练和推理

存内计算&#xff1a;提高计算性能和能效的新技术 传统的计算机架构是将数据存储在存储器中&#xff0c;然后将数据传输到计算单元进行处理。这种架构存在一个性能瓶颈&#xff0c;即数据传输延迟。存内计算通过将计算单元集成到存储器中&#xff0c;消除了数据传输延迟&#…

HiveSQL题——窗口函数(lag/lead)

目录 一、窗口函数的知识点 1.1 窗户函数的定义 1.2 窗户函数的语法 1.3 窗口函数分类 1.4 前后函数:lag/lead 二、实际案例 2.1 股票的波峰波谷 0 问题描述 1 数据准备 2 数据分析 3 小结 2.2 前后列转换&#xff08;面试题&#xff09; 0 问题描述 1 数据准备 …

kubernetes-快速部署一套k8s集群

1、前置知识点 1.1 生产环境可部署Kubernetes集群的两种方式 目前生产部署Kubernetes集群主要有两种方式&#xff1a; kubeadm Kubeadm是一个K8s部署工具&#xff0c;提供kubeadm init和kubeadm join&#xff0c;用于快速部署Kubernetes集群。 二进制包 从github下载发行…

04.对象树

一、引入 1.QT实现输出"hello world" 使用QT编写"hello world"程序&#xff0c;有两种实现方式&#xff1a; &#xff08;1&#xff09;直接在生成的ui文件中&#xff0c;拖入一个label控件&#xff0c;双击控件编辑内容即可实现 &#xff08;2&#xff0…

【C++历练之路】探秘C++三大利器之一——多态

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; 前言&#x1f354;: 在计算机科学的广袤领域中&#xff0c;C多态性是一门令人着迷的技术艺术&#xff0c;它赋予我们的代码更强大的灵活性和可维护性。想象一下&#xff0c;你正在构建一个程序&#xff0c;需要适应不断…