Spark运行架构以及容错机制

news2024/11/15 9:02:38

Spark运行架构以及容错机制

  • 1. Spark的角色区分
    • 1.1 Driver
    • 1.2 Excuter
  • 2. Spark-Cluster模式的任务提交流程
    • 2.1 Spark On Yarn的任务提交流程
      • 2.1.1 yarn相关概念
      • 2.1.2 任务提交流程
    • 2.2 Spark On K8S的任务提交流程
      • 2.2.1 k8s相关概念
      • 2.2.2 任务提交流程
  • 3. Spark-Cluster模式的容灾模式
    • 3.1 Driver容灾
    • 3.2 Executor容灾
    • 3.3 RDD容错
  • 4. 疑问和思考
    • 4.1 是否可以部署多个Driver,形成HA模式,如果主Driver宕机,备Driver自动接替?
  • 5. 参考文档

spark是一个开发框架,用于进行数据批处理,本文主要探讨Spark任务运行的的架构。由于在日常生产环境中,常用的是spark on yarn 和spark on k8s两种类型的模式,因此本文也主要探讨这两种类型的异同,以及不同角色的容错机制。


1. Spark的角色区分

1.1 Driver

Spark的驱动器节点,负责运行Spark程序中的main方法,执行实际的代码。Driver在Spark作业时主要负责:

  • 将用户程序转化为作业(job)
  • 负责跟RM(yarn)或者 Apiserver(k8s)申请资源,调度并拉起Excutor,协调和分配Executor之间的任务(task)
  • 监控Executor的执行状态
  • 通过UI展示运行情况。

1.2 Excuter

Executor是Spark程序中的一个JVM进程,负责执行Spark作业的具体任务(task),每个任务之间彼此相互独立。Spark应用启动时,Executor同时被启动,并且伴随着Spark程序的生命周期而存在。如果有Executor节点发生了故障,程序也不会停止运行,而是将出错的Executor节点上的任务调度到其他Executor节点运行。

Executor的核心功能:

  • 运行Spark作业中具体的任务,并且将执行结果返回给Driver。
  • 通过自身的块管理器(Block Manager)对用户要求缓存的RDD进行内存式存储。RDD式缓存在Executor进程内部的,这样任务在运行时可以充分利用缓存数据加速运算。

2. Spark-Cluster模式的任务提交流程

2.1 Spark On Yarn的任务提交流程

2.1.1 yarn相关概念

RM(ResourceManager):

即资源管理,在YARN中,RM负责集群中所有资源的统一管理和分配,它接收来自各个节点(NM)的资源汇报信息,并把这些信息按照一定的策略分配给各个应用程序(实际上是AM)

NM(NodeManager):
NM是运行在单个节点上的代理,它需要与应用程序的AM和集群管理者RM交互:

  • 从AM上接收有关Container的命令并执行之(比如启动、停止Container);
  • 向RM汇报各个Container运行状态和节点健康状况,并领取有关Container的命令(比如清理Container)执行之。

AM(ApplicationMaster):

用户提交的每个应用程序均包含一个AM,它可以运行在RM以外的机器上负责,主要负责

  • 与RM调度器协商以获取资源(用Container表示),将得到的任务进一步分配给内部的任务(资源的二次分配)。
  • 与NM通信以启动/停止任务。
  • 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

注:RM只负责监控AM,并在AM运行失败时候启动它。RM不负责AM内部任务的容错,任务的容错由AM完成。

在Yarn任务的启动流程中,

  • client优先跟RM获取NM资源并启动AM,在Cluster模式下,AM启动后client就可以退出了
  • AM构建任务信息,并RM获取NM资源并启动Executor,并将task信息分配给Executor从而实现任务启动
  • Executor需要跟AM进行心跳汇报,如果Executor异常,相关的拉起动作也是有AM来控制。

2.1.2 任务提交流程

Driver和AM是两个完全不同的东西,Driver是控制Spark计算和任务资源的,而AM是控制yarn app运行和任务资源的。在Spark On Yarn模式中,Driver运行在AM上,Driver会和AM通信,资源的申请由AppMaster来完成,而任务的调度和执行则由Driver完成,Driver会通过与AppMaster通信来让Executor的执行具体的任务。

任务提交流程图
在这里插入图片描述
执行过程

  1. Client向YARN中提交应⽤程序,包括AM程序、启动AM的命令、需要在Executor中运⾏的程序等
  2. RM收到请求后,在集群中选择⼀个NM,为该应⽤程序分配第⼀个Container,要求它在这个Container中启动应⽤程序的AM,进行SparkContext(Driver)等的初始化
  3. AM向RM注册,这样⽤户可以直接通过RM查看应⽤程序的运⾏状态,然后它将采⽤轮询的⽅式通过RPC协议为各个任务申请资源,并监控它们的运⾏状态直到运⾏结束
  4. ⼀旦AM申请到资源(也就是Container)后,便与对应的NM通信,要求它在获得的Container中启动Executor,Executor启动后会向 AM中的SparkContext(Driver)注册并申请Task。
  5. AM中的SparkContext(Driver)分配Task给Executor执⾏,运⾏Task并向AM中的SparkContext(Driver)的汇报运⾏的状态和进度,以让 AM中的SparkContext(Driver)随时掌握各个任务的运⾏状态,从⽽可以在任务失败时重新启动任务应⽤程序运⾏完成后,AM中的SparkContext(Driver)向NM申请注销并关闭⾃⼰
    6.应⽤程序运⾏完成后,AM向NM申请注销并关闭⾃⼰

YARN-Cluster的执行,需要安装spark 客户端,并执行如下命令提交任务

spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn  --deploy-mode cluster \
--num-executors 1 \
/Users/ly/apps/spark-2.2.0-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.2.0.jar 10

在这里插入图片描述

2.2 Spark On K8S的任务提交流程

Spark 2.3开始,Spark官方就开始支持Kubernetes作为新的资源调度模式。

2.2.1 k8s相关概念

Master:
Kubernetes里的Master指的是集群控制节点,每一个Kubernetes集群里都必须要有一个Master节点来负责整个集群的管理和控制,基本上Kubernetes的所有控制命令都发给它,它来负责具体的执行过程,我们后面执行的所有命令基本都是在Master节点上运行的

Node:
Node节点是Kubernetes集群中的工作负载节点,每个Node都会被Master分配一些应用程序服务以及云工作流。

2.2.2 任务提交流程

总体提交流程如下

在这里插入图片描述

可以通过spark原生提交方式spark-on-k8s-operator提交 两种方式进行提交,两种方式实现上有些差异,但是总体流程是一致的。

1, spark原生提交方式

需要安装spark 客户端,并执行如下命令提交任务

bin/spark-submit \
    --master k8s://https://{k8s-apiserver-host}:6443 \
    --deploy-mode cluster \
    --name spark-wordcount-example \
    --class org.apache.spark.examples.JavaWordCount \
    local:///opt/spark/examples/target/scala-2.11/jars/spark-examples_2.11-2.4.5.jar \
    oss://{wordcount-file-oss-bucket}/

2, spark-on-k8s-operator提交

spark-on-k8s-operator[2],可以让用户以CRD(CustomResourceDefinition) [4] 的方式提交和管理Spark作业。这种方式能够更好的利用k8s原生的能力,具备更好的扩展性。并且在此之上增加了定时任务、重试、监控等一系列功能。具体的功能特性可以在github查看官方文档(kubernetes官方推荐)

需要
1, 需要提前在k8s集群中安装,此时会启动一个名为sparkoperator的pod
2,定义提交spark任务的相关CRD资源
3,提交作业时,无需准备一个具备Spark环境的Client,直接通过kubectl或者kubernetes api就可以提交Spark作业。

列入一个crd,命名spark.yaml

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
  name: spark-wordcount-example
  namespace: default
spec:
  type: Java
  sparkVersion: 2.4.5
  mainClass: org.apache.spark.examples.JavaWordCount
  image: {Spark镜像地址}
  mainApplicationFile: "local:///opt/spark/examples/target/scala-2.11/jars/spark-examples_2.11-2.4.5.jar"
  arguments:
    - "oss://{wordcount-file-oss-bucket}/"
  driver:
    cores: 1
    coreLimit: 1000m
    memory: 4g
  executor:
    cores: 1
    coreLimit: 1000m
    memory: 4g
    memoryOverhead: 1g
    instances: 2

执行如下命令即可启动相关的pod,并进行提交任务

kubectl apply -f spark.yaml

在这里插入图片描述

3. Spark-Cluster模式的容灾模式

3.1 Driver容灾

Driver异常退出时,一般要使用checkpoint重启Driver,重新构造上下文并重启接收器。
第一步,恢复检查点记录的元数据块。
第二步,未完成作业的重新形成。由于失败而没有处理完成的RDD,将使用恢复的元数据重新生成RDD,然后运行后续的Job重新计算后恢复。

3.2 Executor容灾

Executor异常是日常生产环境中最常遇到的现象,造成的原因很多,最常见的是由于机器故障,从而导致就上运行的Executor异常。

Executor异常退出时,Driver没有在规定时间内收到执行器的状态更新,于是Driver会将注册的Executor移除,并通过调度器自动重新拉起Executor。新启动的Executor会重新注册到Driver中,Driver会根据DAG给Executor重新分配相关的Task。Executor分配到到来自Driver的Task,需要重checkpoint重新加载数据并继续执行计算。Spark运算数据行程DAG,如果遇到不同的Executor之间有数据交互时(比如ExecutorA的数据聚合依赖于ExecutorB和ExecutorC,ExecutorB宕机,ExecutorA的数据聚合也不准确),不能简单的通过启动对应的Executor相关的数据进行恢复(可能会有数据紊乱),通常恢复的时间较久

3.3 RDD容错

窄依赖
指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区 或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。

宽依赖
指子RDD的分区依赖于父RDD的多个分区或所有分区,即存在一个父RDD的一个分区对应一个子RDD的多个分区。

checkpoint机制
是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。

注意
1, 在容错机制中,如果一个节点死机了,而且运算窄依赖,则只要把丢失的父RDD分区重算即可,不依赖于其他节点。
2, 而宽依赖需要父RDD的所有分区都存在,重算就很昂贵了。如果恢复的代价过于昂贵,就会通过checkpoints重新进行计算。
3,利用checkpoint机制,记载最新的数据计算点,重新拉起任务进行计算

4. 疑问和思考

4.1 是否可以部署多个Driver,形成HA模式,如果主Driver宕机,备Driver自动接替?

可以,基于ZK进行选主。

5. 参考文档

  • Spark 容错以及高可用性HA
  • Spark 容错机制
  • Spark on Kubernetes作业执行流程
  • Spark on Yarn运行机制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1414714.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024最新版Visual Studio Code安装使用指南

2024最新版Visual Studio Code安装使用指南 Installation and Usage Guide for the Latest Visual Studio Code in 2024 By JacksonML Visual Studio Code最新版1.85已经于2023年11月由其官网 https://code.visualstudio.com正式发布,这是微软公司2024年发行的的最…

《WebKit 技术内幕》学习之十五(5):Web前端的未来

5 Crosswalk项目 Crosswalk项目是由英特尔公司发起的一个开源项目,该项目基于WebKit(Blink)和Chromium等开源项目打造,其目的是提供一个跨不同操作系统的Web运行环境,包括Android、Tizen、Linux、Windows、MacOS等众多…

Linux-----Shell编程之循环语句

目录 一、小命令 1、echo 实验: 2、date ------ 查看当前系统时间 3、cal ---- 日历 4、seq 打印 二、循环语句 1、for语句 实验: 计算整数和: 列出奇偶数 批量添加、删除用户 密码验证 随机抽奖 改名 九九乘法表 九九乘…

线性表--栈

1.什么是栈? 栈是一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除 操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出的原则。 压栈:栈的插入操作叫做进栈/压栈/入栈&#xff…

AI大模型开发架构设计(5)——人人能学会的Llama-2大模型微调

文章目录 人人能学会的Llama-2大模型微调1 什么是Llama-2以及关键特性分析什么是Llama-2?Llama-2关键特性分析2 Llama-2微调全流程剖析为什么要微调Llama-2?Llama-2微调全流程3 基于Llama-2微调3个应用案例案例1:电子游戏评价数据生成文本数据集合案例2:利用Llama-2微调模型…

linux 查看zookeeper server运行版本号

zookeeper版本查看运行命令:echo stat|nc localhost 2181 显示如下图所示: Zookeeper version: 3.4.5-cdh6.3.2--1, built on 11/08/2019 13:15 GMT Clients: /127.0.0.1:44814[0](queued0,recved1,sent0) Latency min/avg/max: 0/0/0 Received: 9 Se…

【Linux】开始使用 vim 吧!!!

Linux 1 what is vim ?2 vim基本概念3 vim的基本操作 !3.1 vim的快捷方式3.1.1 复制与粘贴3.1.2 撤销与剪切3.1.3 字符操作 3.2 vim的光标操作3.3 vim的文件操作 总结Thanks♪(・ω・)ノ感谢阅读下一篇文章见!…

这是一片测试文章

这是一片测试文章 这是一片测试文章 这是一片测试文章 这是一片测试文章 这是一片测试文章 这是一片测试文章 真的是测试文章 -111122225555444433333333222211111 dddddaaa

网络安全B模块(笔记详解)- HASH算法的基本使用

1.通过服务器场景(A-Server),进行HASH算法的基本使用。将123456作为openssl md5 的输入参数,使用 123456进行md5计算并将内容输出到屏幕。将此命令中输出结果的命令作为Flag提交; 2.通过服务器场景使用不同的加密方式对123456进行加密,对比两个加密字符串有何不同。使用…

20240127如何在线识别德语字幕?

20240127如何在线识别德语字幕? 2024/1/27 11:42 1945[科尔贝格]Kolberg 01:48:49 接近109分钟 德语视频的字幕OCR适配: 1、whisper,8:39-8:58,使用GTX1080需要接近20分钟。对整机性能要求比较重,特别吃显卡&#xff…

代码随想录算法刷题训练营day16

代码随想录算法刷题训练营day16:LeetCode(104)二叉树的最大深度 、LeetCode(559)n叉树的最大深度、LeetCode(111)二叉树的最小深度、LeetCode(222)完全二叉树的节点个数 LeetCode(104)二叉树的最大深度 题目 代码 /*** Definition for a binary tree node.* publ…

外包干了10个月,技术退步明显...

先说一下自己的情况,大专生,18年通过校招进入武汉某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…

上升子序列的最大长度,递归-记忆化搜索-动态规划三步走

题目描述: 小明有一个数组,他想从数组任意元素开始向后遍历,找出所有上升子序列,并计算出最长的上升子序列的长度。 数据范围: 每组数据长度满足 1≤n≤200 1≤n≤200 , 数据大小满足 1≤val≤350 1≤val≤…

一句话说透redis哨兵模式

提到哨兵模式,不得不从另外一个模式进行说起,那就是redis的最常见的模式 主从模式,那么为啥还需要哨兵模式呢? 是因为如果开启了reids的主从模式,当主有问题时候,需要人工的切换到从节点上,无法…

如何实现无公网IP实现远程访问MongoDB文件数据库

📑前言 本文主要是如何实现无公网IP实现远程访问MongoDB文件数据库的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是青衿🥇 ☁️博客首页:CSDN主页放风讲故事 &#x…

免费激活Vmware16且配置虚拟机网络

今天从头配置了一台虚拟机,遇到了点问题,记录一下从头开始的过程,以便下次查看 第一步 下载VM16 链接:https://pan.baidu.com/s/1a2gIXKYMMRXVEHb7bM4stw 提取码:7mht 步骤很简单,安装之后直接把文件夹里…

2024区块链应用最趋势,RWA实物资产化

作者 张群(赛联区块链教育首席讲师,工信部赛迪特聘资深专家,CSDN认证业界专家,微软认证专家,多家企业区块链产品顾问)关注张群,为您提供一站式区块链技术和方案咨询。 实物资产通证化&#xff0…

设计模式分类

常用的设计模式有哪些? 常用的设计模式通常按照创建型、结构型和行为型三大类别来划分,以下是每个类别中的一些常见设计模式: 创建型(Creational Patterns): 单例模式(Singleton Pattern&…

openssl3.2 - 测试程序的学习 - test\acvp_test.c

文章目录 openssl3.2 - 测试程序的学习 - test\acvp_test.c概述笔记要单步学习的测试函数备注END openssl3.2 - 测试程序的学习 - test\acvp_test.c 概述 openssl3.2 - 测试程序的学习 将test*.c 收集起来后, 就不准备看makefile和make test的日志参考了. 按照收集的.c, 按照…

二极管漏电流对单片机ad采样偏差的影响

1,下图是常规的单片机采集电压电路,被测量电压经过电阻分压,给到mcu采集,反向二极管起到钳位作用,避免高压打坏mcu。 2,该电路存在的问题 二极管存在漏电流,会在100k电阻上产生叠加电压&#x…