互联网加竞赛 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

news2024/11/15 15:29:04

文章目录

  • 1 前言
  • 2 相关技术
    • 2.1CNN简介
    • 2.2 人脸识别算法
    • 2.3专注检测原理
    • 2.4 OpenCV
  • 3 功能介绍
    • 3.1人脸录入功能
    • 3.2 人脸识别
    • 3.3 人脸专注度检测
    • 3.4 识别记录
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的人脸专注度检测计算算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 相关技术

2.1CNN简介

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input
layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling
layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected
layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

2.2 人脸识别算法

利用dlib实现人脸68个关键点检测并标注,关键代码



    import cv2
    
    # 加载人脸识别模型
    face_rec_model_path = 'dlib_face_recognition_resnet_model_v1.dat'
    facerec = dlib.face_recognition_model_v1(face_rec_model_path)
    # 加载特征点识别模型
    predictor_path = "shape_predictor_5_face_landmarks.dat"
    predictor = dlib.shape_predictor(predictor_path)
    
    # 读取图片
    img_path = "step1/image/face.jpg"
    img = cv2.imread(img_path)
    # 转换为灰阶图片
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # 正向人脸检测器将图像
    detector = dlib.get_frontal_face_detector()


    # 使用人脸识别模型来检测图像中的人脸
    faces = detector(gray, 1)
    # 使用特征点识别模型来检测人脸中的特征
    for i, face in enumerate(faces):
        # 获取人脸特征点
        shape = predictor(img, face)

2.3专注检测原理

总体流程

主要通过电脑摄像头去实时的抓拍学生当前的状态和行为,不间断的采集学生上课时的面部表情和眼睛注视的方向,利用CNN提取相应的特征数据并进行分析处理,若对应输出的判断值大于设置的阈值时,则认为学生在走神没有认真学习。并且对拍摄时间进行计时,在界面上实时输出该学生在课堂上的有效学习时间和学生在课堂上专注时间的比例并进行存入表格中。

在这里插入图片描述

眼睛检测算法

基于dlib人脸识别68特征点检测、分别获取左右眼面部标志的索引,通过opencv对视频流进行灰度化处理,检测出人眼的位置信息。人脸特征点检测用到了dlib,dlib有两个关键函数:dlib.get_frontal_face_detector()和dlib.shape_predictor(predictor_path)。

前者是内置的人脸检测算法,使用HOG pyramid,检测人脸区域的界限(bounds)。
后者是用来检测一个区域内的特征点,并输出这些特征点的坐标,它需要一个预先训练好的模型(通过文件路径的方法传入),才能正常工作。
使用开源模型shape_predictor_68_face_landmarks.dat,可以得到68个特征点位置的坐标,连起来后,可以有如图所示的效果(红色是HOG
pyramid检测的结果,绿色是shape_predictor的结果,仅把同一个器官的特征点连线)。

在这里插入图片描述

通过计算眼睛的宽高比来确定专注状态

基本原理:计算 眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR在某个值上下波动,当人眼闭合时
在这里插入图片描述

关键代码

 # -*- coding: utf-8 -*-
    # import the necessary packages
    from scipy.spatial import distance as dist
    from imutils.video import FileVideoStream
    from imutils.video import VideoStream
    from imutils import face_utils
    import numpy as np # 数据处理的库 numpy
    import argparse
    import imutils
    import time
    import dlib
    import cv2


    def eye_aspect_ratio(eye):
        # 垂直眼标志(X,Y)坐标
        A = dist.euclidean(eye[1], eye[5])# 计算两个集合之间的欧式距离
        B = dist.euclidean(eye[2], eye[4])
        # 计算水平之间的欧几里得距离
        # 水平眼标志(X,Y)坐标
        C = dist.euclidean(eye[0], eye[3])
        # 眼睛长宽比的计算
        ear = (A + B) / (2.0 * C)
        # 返回眼睛的长宽比
        return ear


    # 定义两个常数
    # 眼睛长宽比
    # 闪烁阈值
    EYE_AR_THRESH = 0.2
    EYE_AR_CONSEC_FRAMES = 3
    # 初始化帧计数器和眨眼总数
    COUNTER = 0
    TOTAL = 0
     
    # 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测
    print("[INFO] loading facial landmark predictor...")
    # 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
    detector = dlib.get_frontal_face_detector()
    # 第二步:使用dlib.shape_predictor获得脸部特征位置检测器
    predictor = dlib.shape_predictor('D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat')
     
    # 第三步:分别获取左右眼面部标志的索引
    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
    
    # 第四步:打开cv2 本地摄像头
    cap = cv2.VideoCapture(0)
     
    # 从视频流循环帧
    while True:
        # 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化
        ret, frame = cap.read()
        frame = imutils.resize(frame, width=720)
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 第六步:使用detector(gray, 0) 进行脸部位置检测
        rects = detector(gray, 0)
        
        # 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
        for rect in rects:
            shape = predictor(gray, rect)
            
            # 第八步:将脸部特征信息转换为数组array的格式
            shape = face_utils.shape_to_np(shape)
            
            # 第九步:提取左眼和右眼坐标
            leftEye = shape[lStart:lEnd]
            rightEye = shape[rStart:rEnd]
            
            # 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
            leftEAR = eye_aspect_ratio(leftEye)
            rightEAR = eye_aspect_ratio(rightEye)
            ear = (leftEAR + rightEAR) / 2.0
     
            # 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
            leftEyeHull = cv2.convexHull(leftEye)
            rightEyeHull = cv2.convexHull(rightEye)
            cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
            cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
     
            # 第十二步:进行画图操作,用矩形框标注人脸
            left = rect.left()
            top = rect.top()
            right = rect.right()
            bottom = rect.bottom()
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 3)    
     
            '''
                分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动
            '''
            # 第十三步:循环,满足条件的,眨眼次数+1
            if ear < EYE_AR_THRESH:# 眼睛长宽比:0.2
                COUNTER += 1
               
            else:
                # 如果连续3次都小于阈值,则表示进行了一次眨眼活动
                if COUNTER >= EYE_AR_CONSEC_FRAMES:# 阈值:3
                    TOTAL += 1
                # 重置眼帧计数器
                COUNTER = 0
                
            # 第十四步:进行画图操作,68个特征点标识
            for (x, y) in shape:
                cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)
                
            # 第十五步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
            cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            cv2.putText(frame, "Blinks: {}".format(TOTAL), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            cv2.putText(frame, "COUNTER: {}".format(COUNTER), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) 
            cv2.putText(frame, "EAR: {:.2f}".format(ear), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)


        print('眼睛实时长宽比:{:.2f} '.format(ear))
        if TOTAL >= 50:
            cv2.putText(frame, "SLEEP!!!", (200, 200),cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
        cv2.putText(frame, "Press 'q': Quit", (20, 500),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
        # 窗口显示 show with opencv
        cv2.imshow("Frame", frame)
        
        # if the `q` key was pressed, break from the loop
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
            
    # 释放摄像头 release camera
    cap.release()
    # do a bit of cleanup
    cv2.destroyAllWindows()


2.4 OpenCV

OpenCV是计算机视觉中一个经典的数据库。支持多语言、跨平台、功能强大。其提供了一个Python接口,用户可以在保证可读性和操作效率的前提下,用Python调用C/C++实现所需的功能。OpenCV是一个基于BSD许可证的跨平台计算机视觉库,可以在Linux、windows和Mac
OS操作系统上运行。它由一系列C函数和少量C++类组成。同时,它还提供了与Python、ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉中的许多通用算法。

本项目中OpenCV主要是在图片的采集的图片的预处理方面使用,通过操作界面中的按钮选项选择是否打开摄像头,使用OpenCV来调用电脑摄像头来检测录像过程中的聚焦和人脸镜头的矫正等状态,然后在摄像头的录像的视频流中抓取对应的人脸照片,然后调用内部的函数对照片的尺寸和光线等进行矫正处理后,传给神经网络进行特征值提取。

3 功能介绍

3.1人脸录入功能

数据库数据录入

将采集到的人脸信息和姓名、学号录入到数据库中,数据库表如下图所示:

在这里插入图片描述

在这里插入图片描述

过程演示

在这里插入图片描述

3.2 人脸识别

在这里插入图片描述

3.3 人脸专注度检测

拍摄时间进行计时,在界面上实时输出该学生在课堂上的有效学习时间和学生在课堂上专注时间的比例
在这里插入图片描述

3.4 识别记录

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1414599.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

力扣hot100 岛屿数量 dfs 图论

Problem: 200. 岛屿数量 文章目录 思路复杂度Code 思路 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( 1 ) O(1) O(1) Code class Solution {int n, m;public int numIslands(char[][] grid){n grid.length;if (n 0)return 0;m grid[0].length;int ans 0;…

使用make_grid多批次显示网格图像(使用CIFAR数据集介绍)

背景介绍 在机器学习的训练数据集中&#xff0c;我们经常使用多批次的训练来实现更好的训练效果&#xff0c;具体到cv领域&#xff0c;我们的训练数据集通常是[B,C,W,H]格式&#xff0c;其中&#xff0c;B是每个训练批次的大小&#xff0c;C是图片的通道数&#xff0c;如果是1…

告别无法访问的Github

告别无法访问的Github 最近在使用github的时候又登不上去了&#xff0c;挂着VPN都没用 但是自己很多项目都存在github&#xff0c;登不上去那不得损失很大 所以一行必须整点儿特殊手段来访问&#xff0c;顺便分享一下 1.加速器 网上很多解决方案都是在分享各种加速器来登陆…

【Vue】1-2、Webpack 中的插件

一、Webpack 插件的作用 通过安装和配置第三方的插件&#xff0c;可以拓展 webpack 的能力&#xff0c;从而让 webpack 用起来更方便。 二、两个常用插件 1&#xff09;webpack-dev-server 类似于 node.js 使用的 nodemon 工具 每当修改了源代码&#xff0c;webpack 会自动…

Python算法题集_接雨水

本文为Python算法题集之一的代码示例 题目42&#xff1a;接雨水 说明&#xff1a;给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1]…

前端工程化基础(二):前端包管理工具npm/yarn/cnpm/npx/pnpm

前端包管理工具 代码共享方案 创建自己的官网&#xff0c; 将代码放到官网上面将代码提交到GitHub上面&#xff0c;负责让使用者下载将代码提交到npm registry上面 下载比较方便&#xff0c;使用npm install xxx即可下载相应的代码npm管理的包 npm配置文件 主要用于存储项目…

一篇文章带你了解C++中隐含的this指针

文章目录 一、this指针的引出二、this指针的特性【面试题】 一、this指针的引出 我们先来定义一个日期类Date&#xff0c;下面这段代码执行的结果是什么呢&#xff1f; class Date { public:void Init(int year, int month, int day){_year year;_month month;_day day;}v…

高级自动驾驶LiDAR反射白板

随着自动驾驶技术的不断发展&#xff0c;激光雷达作为其核心传感器之一&#xff0c;正逐渐成为业界关注的焦点。激光雷达通过发射激光束并测量反射回来的时间来获取周围环境的三维信息。为了确保激光雷达能够准确、稳定地工作&#xff0c;对其进行标定是必不可少的环节。本文将…

开发微信小程序,将图片下载到相册的方法,saveImageToPhotosAlbum怎么用

在开发微信小程序的时候&#xff0c;经常能看到小程序里面有下载按钮&#xff0c;如何将小程序中的图片下载到手机相册中那&#xff0c;下面给大家说一下怎么做&#xff0c;代码如何去写。 一、到微信小程序后台开启“用户隐私保护指引” 1.进入小程序后台&#xff0c;侧拉拉到…

JSP在线阅读系统myeclipse定制开发SQLServer数据库网页模式java编程jdbc

一、源码特点 JSP 小说在线阅读系统是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库 &#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为SQLServer2008&#…

【JavaWeb】监听器 Listener

文章目录 一、监听器是什么二、监听器的分类三、监听器的六个主要接口3.1 application域监听器测试代码 :3.1.1 定义监听器3.1.2 定义触发监听器的代码 3.2 session域监听器测试代码 :3.2.1 定义监听器3.2.2 定义触发监听器的代码 3.3 request域监听器测试代码&#xff1a;3.3.…

大创项目推荐 题目:基于卷积神经网络的手写字符识别 - 深度学习

文章目录 0 前言1 简介2 LeNet-5 模型的介绍2.1 结构解析2.2 C1层2.3 S2层S2层和C3层连接 2.4 F6与C5层 3 写数字识别算法模型的构建3.1 输入层设计3.2 激活函数的选取3.3 卷积层设计3.4 降采样层3.5 输出层设计 4 网络模型的总体结构5 部分实现代码6 在线手写识别7 最后 0 前言…

静态时序分析:传播延迟与转换时间

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 一、传播延迟 在数字集成电路中&#xff0c;一个门的传播延迟&#xff08;Propagation Time&#xff09;定义为从输入的转变发生到输出转变发生的时间&#xff0…

IDEA创建一个web项目部署到tomcat

在 IntelliJ IDEA 中创建并部署一个 Web 项目到 Tomcat,您可以按照以下步骤操作: 1.安装 IntelliJ IDEA: 如果尚未安装 IntelliJ IDEA,请从官方网站 JetBrains 下载并安装 IntelliJ IDEA。 2.启动 IntelliJ IDEA: 打开 IntelliJ IDEA,并确保您已经安装了合适的插件,例如…

Cesium反向遮罩指定区域挖空---Primitive、PolygonGeometry、PolylineGeometry实现

PolylineRegionalExcavationFun2() {import("./data/安徽省.json").then((res) => {console.log(`res`, res);let features = res.features;let positionArray = [];let borderLinePositionArray = [];// 获取区域的经纬度坐标if (features[0]?.geometry?.coord…

一篇带你学会Git基础操作

&#x1f4d9; 作者简介 &#xff1a;RO-BERRY &#x1f4d7; 学习方向&#xff1a;致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f4d2; 日后方向 : 偏向于CPP开发以及大数据方向&#xff0c;欢迎各位关注&#xff0c;谢谢各位的支持 目录 1.认识⼯作区、暂存区…

CMU15-445 Project0

CMU14445 Task #1 - Copy-On-Write Trie Get()思路&#xff1a; 获取根节点指针&#xff0c;顺着key逐字符往下找节点&#xff0c;最后根据题意可以使用dynamic_cast检查是否是TrieNodeWithValue&#xff08;dynamic_pointer_cast也可以)&#xff0c;以下为两者用法&#xff1…

OpenHarmony关系型数据库

1 概述 关系型数据库(Relational Database, 以下简称RDB)是一种基于关系模型来管理数据的数据库&#xff0c;是在SQLite基础上提供一套完整的对本地数据库进行管理的机制&#xff0c;为开发者提供无需编写原生SQL语句即可实现数据增、删、改、查等接口&#xff0c;同时开发者也…

css设置不可点击

文章目录 一、前言二、MDN三、使用四、注意五、总结六、最后 一、前言 在网页开发中&#xff0c;经常会遇到一种情况&#xff0c;就是需要将某个元素的点击事件屏蔽&#xff0c;使其在用户点击时没有任何反应。这时候&#xff0c;我们可以通过CSS的pointer-events属性设置为no…

Jmeter接口测试总结

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号【互联网杂货铺】&#xff0c;回复 1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Jmeter介绍&测试准备 Jmeter介绍&#xff1a;Jmeter是软件…