Python 数据分析实战——为什么销售额减少?酒卷隆治_案例1

news2024/11/16 23:45:47

# 为什么黑猫游戏的销售额会减少?

# 数据集

DAU : 每天至少来访问一次的用户数据

数据内容 数据类型 字段名

访问时间 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

DPU: 每天至少消费1日元的用户数据

数据内容 数据类型  字段名

消费日期 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

消费额 int(数值) Payment

INSTALL : 每个用户首次玩这个游戏的时间数据

数据内容 数据类型 字段名

首次使用的日期 string(字符串)

# 加载模块
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 

# 导入数据
DAU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-dau.csv")
DPU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-dpu.csv")
INSTALL = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section3-install.csv")
# 将数据合并起来
data = DAU.merge(INSTALL,on='user_id')
data = pd.merge(data,DPU, on =['user_id','log_date'], how ='outer') # outer 外连接,保留两个数据集中所有的user_id, log_date
# 对数据进行处理
data.fillna(value=0, inplace =True)
# 剔除多余的列
data.drop(columns=['app_name_y','app_name'])
# 生成新的列,年月份数据
data['log_mon'] = data.log_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
data['install_mon'] = data.install_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
# 按月聚合统计每位人员的销售额
data_mon = data.groupby(['log_mon','user_id','install_mon']).payment.sum().reset_index()

# 如果log_date 等于 install_date 则为新用户
data_mon['type'] = data_mon.apply(lambda x: '1' if x.log_mon == x.install_mon else '0', axis =1)
# 按月统计新老客户的销售额
data1 = data_mon.groupby(['log_mon','type'])['payment'].sum().reset_index(name='tot_payment')
data_pivot = pd.pivot_table(data1,values='tot_payment',index='log_mon',columns='type',aggfunc='sum').reset_index().rename(columns={'0':'老用户','1':'新用户'})
# data_pivot.index=('老用户','新用户')
data_pivot

# 堆积柱形图: 不同月份新老客户的销售额

bar1 = plt.bar(np.arange(2),data_pivot.老用户,color='green',label='老用户',width=0.2,alpha=0.5)
bar2 = plt.bar(np.arange(2),data_pivot.新用户,color='grey',label='新用户',bottom=data_pivot.老用户,width=0.2,alpha=0.5)

plt.bar_label(bar1,color='black')
plt.bar_label(bar2,color='black')

# # 设置x轴标签
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文
plt.title('黑猫游戏新老客户销售额',fontsize=18)
plt.xticks(np.arange(2),data_pivot.log_mon)
plt.xlabel('月份',fontsize=12)
plt.ylabel('月销售额(日元)',fontsize=12)
plt.ylim(0,300000) # 修改刻度
plt.legend(loc='upper right',ncol=1)

# Note: 根据上图可知销售额的下降主要是优于新用户导致。
# 筛选新用户 且消费大于0的用户 的销售数据,对消费金额进行分组,统计不同组内的用户数
data_new = data_mon[(data_mon.type=='1')&(data_mon.payment>0)]
# 对数据进行分组
payment_min = data_new.payment.min()
payment_max = data_new.payment.max()

print(payment_min, payment_max,data_new.user_id.count())
data_new['payment_group'] =pd.cut(data_new.payment,
                                  bins=[payment_min-1,1000,2000,3000,4000,5000,6000,7000,payment_max+1],
                                  labels=['1000日元一下','1000-2000','2000-3000','3000-4000','4000-5000','5000-6000','6000-7000','7000日元以上']) 

data_new_group = pd.pivot_table(data_new,values='user_id',index='payment_group',columns='log_mon',aggfunc='count').reset_index().rename(columns={'2013-06':'六月份','2013-07':'七月份'})
data_new_group

# 可视化
fig = plt.figure(figsize=(10,4)) 
bar1 = plt.bar(np.arange(8), height=data_new_group.六月份, color='blue', width=0.3,alpha = 0.5,label='2013年6月') # alpha 设置透明度
bar2 = plt.bar(np.arange(8)+0.3,height = data_new_group.七月份, color='green',width=0.3,alpha = 0.5,label='2013年7月')

plt.legend()

# 添加数据标注, 
plt.bar_label(bar1)
plt.bar_label(bar2)

# # 设置x轴标签
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文
plt.title('黑猫游戏新老客户销售额度比较',fontsize=18)
plt.xticks(np.arange(8)+0.2,data_new_group.payment_group)
plt.ylabel('消费人数(人)',fontsize=12)
plt.ylim(0,40) # 修改刻度
plt.legend(loc='upper right',ncol=1)

 Note: 由图可知,本月消费2000以下的用户数量减少了。 (根据书本的样例数据计算的结果,并不能反应出销售额的下降是由于消费2000元以下的用户数减少,暂且认为是确实部分数据)

解决对策: 根据之间的假设 宣传活动减少,导致新客户数量减少,新客户带来了销售额的下降,建议恢复商业宣传活动到之前的水平。

Note: 在实际的工作中,还需要判断ROI,比较新用户的顾客终身价值和商业宣传活动的投入成本,再进行决策。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1414123.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

谷歌seo服务费一般是多少?

谷歌SEO服务费是根据多种因素变化的,包括所需的服务范围、项目的规模和复杂性、所在地区的市场竞争情况以及您选择的SEO服务提供商 seo不应该仅仅只是提供技术服务,根据不同的服务内容可以分为不同的收费方式,比如收取固定费用,但…

Java复习系列之阶段二:数据库

1. 基础语法 1.1 DQL(数据查询语句) 执行顺序: from、join 、on、where、group by、having、select、distinct、order by、limit 1.2 DML(数据修改语言) 对数据表的增删改 insert into update set delete form 1.…

YOLOv5改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)

一、本文介绍 本文给大家带来的改进机制是一种重参数化的卷积模块OREPA,这种重参数化模块非常适合用于二次创新,我们可以将其替换网络中的其它卷积模块可以不影响推理速度的同时让模型学习到更多的特征。OREPA是通过在线卷积重参数化(Online Convolutional Re-parameteriza…

Docker启动时出错问题记录

检查windows的Hyper-V是否启动 检查 net start com.docker.service 是否启动

vue3+echarts绘制某省区县地图

vue3echarts绘制某省区县地图 工作中经常需要画各种各样的图,echarts是使用最多的工具,接近春节,想把之前画的echarts图做一个整合,方便同事和自己随时使用,因此用vue3专门写了个web项目,考虑之后不断完善…

3个精美的wordpress律师网站模板

暗红色WordPress律师事务所网站模板 演示 https://www.zhanyes.com/qiye/23.html 暗橙色WordPress律师网站模板 演示 https://www.zhanyes.com/qiye/18.html 红色WordPress律所网站模板 演示 https://www.zhanyes.com/qiye/22.html

喝汽水问题(c语言)

喝汽水,1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水,这里用c语言来解释 可以先用列举法来说明,20可以买20个汽水,两个空瓶换一瓶就可以获得10个汽水,同理10个空瓶个可…

03-Redis缓存高可用集群

文章目录 1、Redis集群方案比较2、Redis高可用集群搭建redis集群搭建Java操作redis集群 4、Redis集群原理分析槽位定位算法跳转重定位Redis集群节点间的通信机制gossip通信的10000端口网络抖动 Redis集群选举原理分析集群脑裂数据丢失问题集群是否完整才能对外提供服务Redis集群…

开源CRM客户管理系统-FeelCRM

FeelCRM客户管理系统 开源项目介绍 FeelCRM客户管理系统,符合中小企业业务流程;支持线索管理、客户管理、商机管理、合同管理、审核管理等多个模块;希望能为广大中小企业以及开发者们提供一个更多的可能性;本版本是我公司跨语言…

Blender教程-物体的移动、旋转与缩放-04

一、新建一个立方体 ShiftA新建一个立方体用来演示。 二、物体的移动 xyz轴移动 点击下图图左侧的移动选项后,选中要移动的物体,会出现三个箭头的方向,这分别代表沿着x、y、z轴移动。xyz平面移动 这个小正方体代表沿着某一个面移动&#…

海康实时监控预览视频流接入web

我们采取的方案是后端获取视频流返回给前端,然后前端播放 海康开放平台海康威视合作生态致力打造一个能力开放体系、两个生态圈,Hikvision AI Cloud开放平台是能力开放体系的核心内容。它是海康威视基于多年在视频及物联网核心技术积累之上,…

【鸿蒙】大模型对话应用(一):大模型接口对接与调试

Demo介绍 本demo对接阿里云和百度的大模型API,实现一个简单的对话应用。 DecEco Studio版本:DevEco Studio 3.1.1 Release HarmonyOS API版本:API9 关键点:ArkTS、ArkUI、UIAbility、网络http请求、列表布局 官方接口文档 此…

黑盒测试用例的具体设计方法(7种)

7种常见的黑盒测设用例设计方法,分别是等价类、边界值、错误猜测法、场景设计法、因果图、判定表、正交排列。 (一)等价类 1.概念 依据需求将输入(特殊情况下会考虑输出)划分为若干个等价类,从等价类中选…

Azure Private endpoint DNS 记录是如何解析的

Private endpoint 从本质上来说是Azure 服务在Azure 虚拟网络中安插的一张带私有地址的网卡。 举例来说如果Storage account在没有绑定private endpoint之前,查询Storage account的DNS记录会是如下情况: Seq Name …

navicat 可以直接往 mysql导入excel表格

妈呀 还好 提前问了一下,不然哼哧哼哧在那里写,导入接口。。

Vulnhub靶场DC-2

本机IP:192.168.223.128 目标IP:192.168.223.131 目标搜索:nmap -sP 192.168.223.1/24 端口搜索:nmap -sV -A -p- 192.168.223.131 开放了80 7744端口 访问一下web 发现进不去 目标ip被重定向到www.dc-2.com 修改一下本地DNS l…

Android源码设计模式解析与实战第2版笔记(一)

第一章 走向灵活软件之路 — 面向对象的六大原则 优化代码的第一步 — 单一职责原则 单一职责原则的英文名称是Single Responsibility Principle,缩写是SRP。 SRP:就一个类而言,应该仅有一个引起它变化的原因。 一个类中应该是一组相关性很…

Windows Server 安装 Docker

一、简介 Docker 不是一个通用容器工具,它依赖运行的 Linux 内核环境。Docker 实质上是在运行的 Linux 服务器上制造了一个隔离的文件环境,所以它执行的效率几乎等同于所部署的 Linux 主机服务器性能。因此,Docker 必须部署在 Linux 内核系统…

多个SSH-Key下,配置Github SSH-Key

首先,检查 github 的连接性,因为DNS污染的原因,很多机器ping不通github,就像博主的机器: 怎么解决DNS污染的问题,博主查了很多教程,测试出一个有效的方法,那就是修改hosts文件。host…

Docker部署思维导图工具SimpleMindMap并实现公网远程访问

文章目录 1. Docker一键部署思维导图2. 本地访问测试3. Linux安装Cpolar4. 配置公网地址5. 远程访问思维导图6. 固定Cpolar公网地址7. 固定地址访问 SimpleMindMap 是一个可私有部署的web思维导图工具。它提供了丰富的功能和特性,包含插件化架构、多种结构类型&…