《动手学深度学习(PyTorch版)》笔记3.1

news2024/12/23 5:38:43

Chapter3 Linear Neural Networks

3.1 Linear Regression

3.1.1 Basic Concepts

我们通常使用 n n n来表示数据集中的样本数。对索引为 i i i的样本,其输入表示为 x ( i ) = [ x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ] ⊤ \mathbf{x}^{(i)} = [x_1^{(i)}, x_2^{(i)},...,x_n^{(i)}]^\top x(i)=[x1(i),x2(i),...,xn(i)],其对应的标签是 y ( i ) y^{(i)} y(i)

3.1.1.1 Linear Model

在机器学习领域,我们通常使用的是高维数据集,建模时采用线性代数表示法会比较方便。当我们的输入包含 d d d个特征时,我们将预测结果 y ^ \hat{y} y^(通常使用“尖角”符号表示 y y y的估计值)表示为:

y ^ = w 1 x 1 + . . . + w d x d + b . \hat{y} = w_1 x_1 + ... + w_d x_d + b. y^=w1x1+...+wdxd+b.

将所有特征放到向量 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd中,并将所有权重放到向量 w ∈ R d \mathbf{w} \in \mathbb{R}^d wRd中,我们可以用点积形式来简洁地表达模型:

y ^ = w ⊤ x + b (1) \hat{y} = \mathbf{w}^\top \mathbf{x} + b \tag{1} y^=wx+b(1)

在式(1)中,向量 x \mathbf{x} x对应于单个数据样本的特征。用符号表示的矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d可以很方便地引用我们整个数据集的 n n n个样本。其中, X \mathbf{X} X的每一行是一个样本,每一列是一种特征。对于特征集合 X \mathbf{X} X,预测值 y ^ ∈ R n \hat{\mathbf{y}} \in \mathbb{R}^n y^Rn可以通过矩阵-向量乘法表示为:

y ^ = X w + b {\hat{\mathbf{y}}} = \mathbf{X} \mathbf{w} + b y^=Xw+b

给定训练数据特征 X \mathbf{X} X和对应的已知标签 y \mathbf{y} y,线性回归的目标是找到一组权重向量 w \mathbf{w} w和偏置 b b b:当给定从 X \mathbf{X} X的同分布中取样的新样本特征时,这组权重向量和偏置能够使得新样本预测标签的误差尽可能小。

虽然我们相信给定 x \mathbf{x} x预测 y y y的最佳模型会是线性的,但我们很难找到一个有 n n n个样本的真实数据集,其中对于所有的 1 ≤ i ≤ n 1 \leq i \leq n 1in y ( i ) y^{(i)} y(i)完全等于 w ⊤ x ( i ) + b \mathbf{w}^\top \mathbf{x}^{(i)}+b wx(i)+b。无论我们使用什么手段来观察特征 X \mathbf{X} X和标签 y \mathbf{y} y,都可能会出现少量的观测误差。因此,即使确信特征与标签的潜在关系是线性的,我们也会加入一个噪声项来考虑观测误差带来的影响。

在开始寻找最好的模型参数(model parameters w \mathbf{w} w b b b之前,
我们还需要两个东西:

  • 一种模型质量的度量方式;
  • 一种能够更新模型以提高模型预测质量的方法。
3.1.1.2 Loss Function

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。
损失函数(loss function)能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。回归问题中最常用的损失函数是平方误差函数。当样本 i i i的预测值为 y ^ ( i ) \hat{y}^{(i)} y^(i),其相应的真实标签为 y ( i ) y^{(i)} y(i)时,
平方误差可以定义为以下公式:

l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 . l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2. l(i)(w,b)=21(y^(i)y(i))2.

常数 1 2 \frac{1}{2} 21不会带来本质的差别,但这样在形式上稍微简单一些(因为当我们对损失函数求导后常数系数为1)。由于训练数据集并不受我们控制,所以经验误差只是关于模型参数的函数。由于平方误差函数中的二次方项,估计值 y ^ ( i ) \hat{y}^{(i)} y^(i)和观测值 y ( i ) y^{(i)} y(i)之间较大的差异将导致更大的损失。为了度量模型在整个数据集上的质量,我们需计算在训练集 n n n个样本上的损失均值(也等价于求和)。

L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 . L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wx(i)+by(i))2.

在训练模型时,我们希望寻找一组参数( w ∗ , b ∗ \mathbf{w}^*, b^* w,b),这组参数能最小化在所有训练样本上的总损失。如下式:

w ∗ , b ∗ = argmin ⁡ w , b   L ( w , b ) . \mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b}\ L(\mathbf{w}, b). w,b=w,bargmin L(w,b).

3.1.1.3 Analytical Solution

线性回归有解析解(analytical solution)。首先,我们将偏置 b b b合并到参数 w \mathbf{w} w中,合并方法是在包含所有参数的矩阵中附加一列。我们的预测问题是最小化 ∥ y − X w ∥ 2 \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 yXw2。这在损失平面上只有一个临界点,这个临界点对应于整个区域的损失极小点。将损失关于 w \mathbf{w} w的导数设为0,即
X ⊤ X w = X ⊤ y \mathbf X^\top \mathbf{X}\mathbf{w}=\mathbf X^\top \mathbf{y} XXw=Xy
得到解析解:

w ∗ = ( X ⊤ X ) − 1 X ⊤ y \mathbf{w}^* = (\mathbf X^\top \mathbf X)^{-1}\mathbf X^\top \mathbf{y} w=(XX)1Xy

像线性回归这样的简单问题存在解析解,但并不是所有的问题都存在解析解。

3.1.1.4 Stochastic Gradient Descent

我们用到一种名为梯度下降(gradient descent)的方法,几乎可以优化所有深度学习模型。它通过不断地在损失函数递减的方向上更新参数来降低误差。

梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值)关于模型参数的导数(在这里也可以称为梯度)。但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B \mathcal{B} B,它是由固定数量的训练样本组成的。然后,我们计算小批量的平均损失关于模型参数的导数(也可以称为梯度)。最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

我们用下面的数学公式来表示这一更新过程,其中 w \mathbf{w} w x \mathbf{x} x都是向量, ∣ B ∣ |\mathcal{B}| B表示每个小批量中的样本数,称为批量大小(batch size)。
η \eta η表示学习率(learning rate)。

( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) . (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b). (w,b)(w,b)BηiB(w,b)l(i)(w,b).

总而言之,算法的步骤如下:
(1)初始化模型参数的值,如随机初始化;
(2)从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。
对于平方损失和仿射变换,可以写成如下形式:

w ← w − η ∣ B ∣ ∑ i ∈ B ∂ w l ( i ) ( w , b ) = w − η ∣ B ∣ ∑ i ∈ B x ( i ) ( w ⊤ x ( i ) + b − y ( i ) )  (关于 w 的偏导) b ← b − η ∣ B ∣ ∑ i ∈ B ∂ b l ( i ) ( w , b ) = b − η ∣ B ∣ ∑ i ∈ B ( w ⊤ x ( i ) + b − y ( i ) )  (关于 b 的偏导) \begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{\mathbf{w}} l^{(i)}(\mathbf{w}, b) = \mathbf{w} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \mathbf{x}^{(i)} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \text{ (关于$\mathbf{w}$的偏导)}\\ b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_b l^{(i)}(\mathbf{w}, b) = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right) \text{ (关于$b$的偏导)} \end{aligned} wbwBηiBwl(i)(w,b)=wBηiBx(i)(wx(i)+by(i)) (关于w的偏导)bBηiBbl(i)(w,b)=bBηiB(wx(i)+by(i)) (关于b的偏导)

批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。这些可以调整但不在训练过程中更新的参数称为超参数(hyperparameter)。调参(hyperparameter tuning)是选择超参数的过程。超参数通常是我们根据训练迭代结果来调整的,而训练迭代结果是在独立的验证数据集(validation dataset)上评估得到的。

在训练了预先确定的若干迭代次数后(或者直到满足某些其他停止条件后),我们记录下模型参数的估计值,表示为 w ^ , b ^ \hat{\mathbf{w}}, \hat{b} w^,b^。但是,即使我们的函数确实是线性的且无噪声,这些估计值也不会使损失函数真正地达到最小值。因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内非常精确地达到最小值。
线性回归恰好是一个在整个域中只有一个最小值的学习问题,但是对像深度神经网络这样复杂的模型来说,损失平面上通常包含多个最小值。深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集上的损失达到最小。事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失,这一挑战被称为泛化(generalization)。

3.1.1.5 Using Models for Prediction

给定特征估计目标的过程通常称为预测(prediction)或推断(inference)。但在统计学中,推断更多地表示基于数据集估计参数。

3.1.2 Vectorization Acceleration

在训练我们的模型时,我们经常希望能够同时处理整个小批量的样本。为了实现这一点,需要我们对计算进行矢量化,从而利用线性代数库,而不是在Python中编写开销高昂的for循环,即使用:

n = 10000
a = torch.ones([n])
b = torch.ones([n])
c=a+b

而不是:

c = torch.zeros(n)
for i in range(n):
    c[i] = a[i] + b[i]

3.1.3 Normal Distribution and Squared Loss

噪声正态分布如下式:

y = w ⊤ x + b + ϵ , y = \mathbf{w}^\top \mathbf{x} + b + \epsilon, y=wx+b+ϵ,

其中, ϵ ∼ N ( 0 , σ 2 ) \epsilon \sim \mathcal{N}(0, \sigma^2) ϵN(0,σ2)

因此,我们现在可以写出通过给定的 x \mathbf{x} x观测到特定 y y y似然(likelihood):

P ( y ∣ x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( y − w ⊤ x − b ) 2 ) . P(y \mid \mathbf{x}) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(-\frac{1}{2 \sigma^2} (y - \mathbf{w}^\top \mathbf{x} - b)^2\right). P(yx)=2πσ2 1exp(2σ21(ywxb)2).

现在,根据极大似然估计法,参数 w \mathbf{w} w b b b的最优值是使整个数据集的似然最大的值:

P ( y ∣ X ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ) . P(\mathbf y \mid \mathbf X) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)}). P(yX)=i=1np(y(i)x(i)).

根据极大似然估计法选择的估计量称为极大似然估计量。虽然使许多指数函数的乘积最大化看起来很困难,但是我们可以在不改变目标的前提下,通过最大化似然对数来简化。由于历史原因,优化通常是说最小化而不是最大化。我们可以改为最小化负对数似然 − log ⁡ P ( y ∣ X ) -\log P(\mathbf y \mid \mathbf X) logP(yX)。由此可以得到的数学公式是:

− log ⁡ P ( y ∣ X ) = ∑ i = 1 n 1 2 log ⁡ ( 2 π σ 2 ) + 1 2 σ 2 ( y ( i ) − w ⊤ x ( i ) − b ) 2 . -\log P(\mathbf y \mid \mathbf X) = \sum_{i=1}^n \frac{1}{2} \log(2 \pi \sigma^2) + \frac{1}{2 \sigma^2} \left(y^{(i)} - \mathbf{w}^\top \mathbf{x}^{(i)} - b\right)^2. logP(yX)=i=1n21log(2πσ2)+2σ21(y(i)wx(i)b)2.

现在我们只需要假设 σ \sigma σ是某个固定常数就可以忽略第一项,现在第二项除了常数 1 σ 2 \frac{1}{\sigma^2} σ21外,其余部分和前面介绍的均方误差是一样的。因此,在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

3.1.4 From Linear Regression to Deep Networks

我们可以用描述神经网络的方式来描述线性模型,从而把线性模型看作一个神经网络。
在这里插入图片描述

首先,我们用“层”符号来重写这个模型。深度学习从业者喜欢绘制图表来可视化模型中正在发生的事情。我们将线性回归模型描述为一个神经网络。需要注意的是,该图只显示连接模式,即只显示每个输入如何连接到输出,隐去了权重和偏置的值。
在图中所示的神经网络中,输入为 x 1 , … , x d x_1, \ldots, x_d x1,,xd,因此输入层中的输入数(或称为特征维度,feature dimensionality)为 d d d。网络的输出为 o 1 o_1 o1,因此输出层中的输出数是1。需要注意的是,输入值都是已经给定的,并且只有一个计算神经元。由于模型重点在发生计算的地方,所以通常我们在计算层数时不考虑输入层。也就是说,图中神经网络的层数为1。我们可以将线性回归模型视为仅由单个人工神经元组成的神经网络,或称为单层神经网络。对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连,我们将这种变换( 图中的输出层)称为全连接层(fully-connected layer)或称为稠密层(dense layer)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1409214.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

composer安装hyperf后,nginx配置hyperf

背景 引入hyperf项目用作微服务,使用composer 安装hyperf后,对hyperf进行nginx配置。 配置步骤 因为hyperf监听的是端口,不像其他laravel、lumen直接指向文件即可。所有要监听端口号。 1 配置nginx server {listen 80;//http&#xff1a…

逻辑回归中的损失函数梯度下降

一、引言 逻辑回归中的损失函数通常采用的是交叉熵损失函数(cross-entropy loss function)。在逻辑回归中,我们通常使用sigmoid函数将线性模型的输出转换为概率值,然后将这些概率值与实际标签进行比较,从而计算损失。 …

2024年mongodb自建三节点副本集详细教程

环境说明 系统centos7.9 自建服务器或云服务器,硬件要求不低于2核2G内存,20G硬盘,文件系统默认是ext4即可。 生产环境最好单独一个磁盘存放数据库,方便数据备份和还原,避免干扰到其他磁盘的运作。 mongodb 4.4.27 …

基于差分进化算法的移动边缘计算 (MEC) 的资源调度分配优化(提供MATLAB代码)

一、优化模型简介 在所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为: max ⁡ m , p , f F miner …

TCP 异常断开连接【重点】

参考链接 https://xiaolincoding.com/network/3_tcp/tcp_down_and_crash.html https://xiaolincoding.com/network/3_tcp/tcp_unplug_the_network_cable.html#%E6%8B%94%E6%8E%89%E7%BD%91%E7%BA%BF%E5%90%8E-%E6%9C%89%E6%95%B0%E6%8D%AE%E4%BC%A0%E8%BE%93 关键词&#xff1a…

重构改善既有代码的设计-学习(三):重新组织数据

1、拆分变量(Split Variable) 有些变量用于保存一段冗长代码的运算结果,以便稍后使用。这种变量应该只被赋值一次。 如果它们被赋值超过一次,就意味它们在函数中承担了一个以上的责任。如果变量承担多个责任,它就应该被…

Redis 面试题 | 10.精选Redis高频面试题

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

利用git上传本地文件

1、建立仓库 2.然后刷新网站,获取下载链接,备用。 3、接下来在本地创建一个文件夹, 4、把github上面的仓库克隆到本地 git clone https://github.com/xxxxx(https://github.com/xxxxx替换成你之前复制的地址) 5、把…

京东高薪招聘GIS开发工程师,细数其背后的商业逻辑

京东以30-50K*16薪的薪资招聘GIS开发工程师。 之前我们介绍过腾讯在智慧城市方向的布局,具体的可以看这里:腾讯在智慧城市方向的布局 今天我们来细数一下京东背后的GIS生意。 01 京东地图 成立时间和所在地 2018年7月,专注于机器人地图和智…

Github 不能访问,提示:port 22: Connection timed out

问题描述 github clone 代码出现错误: $ git clone gitgithub.com:Atlan4/Fnirsi1013D.git Cloning into Fnirsi1013D... ssh: connect to host github.com port 22: Connection timed out fatal: Could not read from remote repository.Please make sure you ha…

wayland(wl_shell) + egl + opengles 最简实例

文章目录 前言一、ubuntu 上相关环境准备1. ubuntu 上安装 weston2. 确定ubuntu 上安装的opengles 版本3. 确定安装的 weston 是否支持 wl_shell 接口二、窗口管理器接口 wl_shell 介绍二、代码实例1.egl_wayland_demo.c2. 编译和运行2.1 编译2.2 运行总结参考资料前言 本文主…

单点登陆(SSO)基于CAS实现前后端分离的SSO系统开发「IDP发起」

关于其他前端常见登录实现单点登录方案,请见「前端常见登录实现方案 单点登录方案 」 前沿 单点登录(SSO),英文全称为 Single Sign On。 SSO 是指在多个应用系统中,用户只需要登录一次,就可以访问所有相互…

❤css实用

❤ css实用 渐变色边框(Gradient borders方法的汇总 5种-代码可直接下载) 资源链接 https://download.csdn.net/download/weixin_43615570/88779950?spm1001.2014.3001.5503 给 border 设置渐变色是很常见的效果,实现这个效果有很多思路 1…

SAP EXCEL上传如何实现指定读取某一个sheet页(ALSM_EXCEL_TO_INTERNAL_TABLE)

如何读取指定的EXCEL sheet 页签,比如要读取下图中第二个输出sheet页签 具体实现方法如下: 拷贝标准的函数ALSM_EXCEL_TO_INTERNAL_TABLE封装成一个自定义函数ZCALSM_EXCEL_TO_INTERNAL_TABLE 在自定义函数导入参数页签新增一个参数SHEET_NAME 在源代码…

MacOS 无法ping 通 github.com 解决方案

ping github.com 会显示请求超时: PING github.com (192.30.253.112): 56 data bytes Request timeout for icmp_seq 0 Request timeout for icmp_seq 1 Request timeout for icmp_seq 2 Request timeout for icmp_seq 3 Request timeout for icmp_seq 4 Request …

硬件-11-服务器的基础知识

参考服务器基础知识大科普 1 电视剧背景 服务器被誉为互联网之魂。 电视剧《创业年代》是一部有冯绍峰和袁姗姗等人联手主演的一部讲述我国第一批科技创业者创业故事的电视剧,可以说是他们铲下了建设中关村的第一捧土。 电视剧《创业年代》中的潮信公司并没有…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-Tag标签管理实现

锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…

特征抽取-----机器学习pycharm软件

导入包 from sklearn.datasets import load_iris # 方法datasets_demo()数据集使用 from sklearn.feature_extraction import DictVectorizer # 方法dict_demo()字典特征抽取用 from sklearn.feature_extraction.text import CountVectorizer # 方法count_demo()文本特征抽…

【Web前端实操11】定位实操_照片墙(无序摆放)

设置一个板块&#xff0c;将照片随意无序摆放在墙上&#xff0c;从而形成照片墙。本来效果应该是很唯美好看的&#xff0c;就像这种&#xff0c;但是奈何本人手太笨&#xff0c;只好设置能达到照片墙的效果就可。 代码如下&#xff1a; <!DOCTYPE html> <html lang&…

企业为何对数据可视化越发看重?

数据可视化&#xff0c;作为信息时代的一项重要技术&#xff0c;正在企业中崭露头角&#xff0c;逐渐成为业务决策和运营管理的得力助手。企业之所以对数据可视化如此重视&#xff0c;是因为它为企业带来了诸多实际利益和战略优势。 首先&#xff0c;数据可视化为企业提供了更…