【分布式技术】消息队列Kafka

news2024/11/16 4:40:03

目录

一、Kafka概述

二、消息队列Kafka的好处

三、消息队列Kafka的两种模式

四、Kafka

1、Kafka 定义

2、Kafka 简介

3、Kafka 的特性

五、Kafka的系统架构

六、实操部署Kafka集群

 步骤一:在每一个zookeeper节点上完成kafka部署

​编辑

步骤二:传给其他节点

步骤三:启动3个节点

kafka管理topic命令

 创建topic

查看有哪些topic

查看topic的详细信息

修改topic的分区数量

删除topic

生产者推送数据

消费者拉取kafka的数据

七、数据可靠性保证

八、数据一致性问题

九、ack 应答机制

十、实操Filebeat+Kafka+ELK部署

步骤一:修改filebeat节点的配置文件

步骤二:添加logstash一个conf文件

步骤三:启动一下,验证

总结:排错思路


一、Kafka概述

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。
我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

二、消息队列Kafka的好处

(1)解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

(2)可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

(4)灵活性 & 峰值处理能力
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

(5)异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

三、消息队列Kafka的两种模式

(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

(2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。
发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。

四、Kafka

1、Kafka 定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据领域的实时计算以及日志收集。

2、Kafka 简介

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,
Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

3、Kafka 的特性

●高吞吐量、低延迟
Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

●可扩展性
kafka 集群支持热扩展

●持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

●容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)

●高并发
支持数千个客户端同时读写

五、Kafka的系统架构

(1)Broker
一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

(2)Topic
可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储

(3)Partition
为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。
##Partation 数据路由规则:
1.指定了 patition,则直接使用;
2.未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
3.patition 和 key 都未指定,使用轮询选出一个 patition。

每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。

每个 partition 中的数据使用多个 segment 文件存储。

如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。

●broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
●如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
●如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。

//分区的原因
●方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
●可以提高并发,因为可以以Partition为单位读写了。

(4)Replica
副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。

(5)Leader
每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。

(6)Follower
Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。

(7)Producer
生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。

(8)Consumer
消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。

(9)Consumer Group(CG)
消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。

(10)offset 偏移量
可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。

(11)Zookeeper
Kafka 通过 Zookeeper 来存储集群的 meta 信息。

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。

也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。

六、实操部署Kafka集群

1.下载安装包
官方下载地址:http://kafka.apache.org/downloads.html

cd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz


2.安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka

//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}

vim server.properties
broker.id=0    ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.20.12:9092    ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168    #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824    #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181    ●123行,配置连接Zookeeper集群地址

//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin


source /etc/profile

//配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)
	echo "---------- Kafka 启动 ------------"
	${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)
	echo "---------- Kafka 停止 ------------"
	${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)
	$0 stop
	$0 start
;;
status)
	echo "---------- Kafka 状态 ------------"
	count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
	if [ "$count" -eq 0 ];then
        echo "kafka is not running"
    else
        echo "kafka is running"
    fi
;;
*)
    echo "Usage: $0 {start|stop|restart|status}"
esac

//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka

//分别启动 Kafka
service kafka start


3.Kafka 命令行操作
//创建topic
kafka-topics.sh --create --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --replication-factor 2 --partitions 3 --topic test

-------------------------------------------------------------------------------------
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 
--partitions:定义分区数 
--topic:定义 topic 名称
-------------------------------------------------------------------------------------

//查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 

//查看某个 topic 的详情
kafka-topics.sh  --describe --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 

//发布消息
kafka-console-producer.sh --broker-list 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092  --topic test

//消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092 --topic test --from-beginning

-------------------------------------------------------------------------------------
--from-beginning:会把主题中以往所有的数据都读取出来
-------------------------------------------------------------------------------------

//修改分区数
kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181  --alter --topic test --partitions 6

//删除 topic
kafka-topics.sh --delete --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181  --topic test

 步骤一:在每一个zookeeper节点上完成kafka部署

步骤二:传给其他节点

需要修改配置文件中的broker.id和listeners 

步骤三:启动3个节点

在config目录下,可以用脚本命令指定配置文件

kafka管理topic命令

 创建topic

[root@localhost config]# kafka-topics.sh --create --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --replication-factor 2 --partitions 3 --topic lxy
Created topic lxy.

 

查看有哪些topic

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --list
lxy

 

查看topic的详细信息

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --describe --topic lxy
Topic: lxy	TopicId: -FkKaSeYRJGZGuWE6UazxQ	PartitionCount: 3	ReplicationFactor: 2	Configs: 
	Topic: lxy	Partition: 0	Leader: 1	Replicas: 1,2	Isr: 1,2
	Topic: lxy	Partition: 1	Leader: 2	Replicas: 2,0	Isr: 2,0
	Topic: lxy	Partition: 2	Leader: 0	Replicas: 0,1	Isr: 0,1

 

修改topic的分区数量

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --alter --topic test --partitions 2

删除topic

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --delete --topic test
Topic test is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.
[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --list
lxy

 

生产者推送数据

[root@localhost config]# kafka-console-producer.sh --broker-list 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092 --topic lxy
>a
>b
>c
>d
>e
>f

消费者拉取kafka的数据

[root@localhost config]# kafka-console-consumer.sh --bootstrap-server 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092 --topic lxy --from-beginning
a
b
d
f
c
e

七、数据可靠性保证

为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后, 都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。

八、数据一致性问题

LEO:指的是每个副本最大的 offset; 
HW:指的是消费者能见到的最大的 offset,所有副本中最小的 LEO。

(1)follower 故障 
follower 发生故障后会被临时踢出 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合),待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。

(2)leader 故障 
leader 发生故障之后,会从 ISR 中选出一个新的 leader, 之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。

注:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

九、ack 应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡选择。

当 producer 向 leader 发送数据时,可以通过 request.required.acks 参数来设置数据可靠性的级别:
●0:这意味着producer无需等待来自broker的确认而继续发送下一批消息。这种情况下数据传输效率最高,但是数据可靠性确是最低的。当broker故障时有可能丢失数据。

●1(默认配置):这意味着producer在ISR中的leader已成功收到的数据并得到确认后发送下一条message。如果在follower同步成功之前leader故障,那么将会丢失数据。

●-1(或者是all):producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成可靠性最高。但是如果在 follower 同步完成后,broker 发送ack 之前,leader 发生故障,那么会造成数据重复。

三种机制性能依次递减,数据可靠性依次递增。

注:在 0.11 版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。在 0.11 及以后版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据, Server 端都只会持久化一条。

十、实操Filebeat+Kafka+ELK部署

步骤一:修改filebeat节点的配置文件

部署 Filebeat 
cd /usr/local/filebeat

vim filebeat.yml
filebeat.prospectors:
- type: log
  enabled: true
  paths:
    - /var/log/nginx/access_log
  tags: ["nginx_access"]
  
- type: log
  enabled: true
  paths:
    - /var/log/nginx/error_log
  tags: ["nginx_error"]
  
......
#添加输出到 Kafka 的配置
output.kafka:
  enabled: true
  hosts: ["192.168.20.12:9092","192.168.20.15:9092","192.168.20.16:9092"]    #指定 Kafka 集群配置
  topic: "nginx_log"    #指定 Kafka 的 topic
  
#启动 filebeat
./filebeat -e -c filebeat.yml

步骤二:添加logstash一个conf文件

 

[root@nginx-test conf.d]#cat kafka.conf 
input{
    kafka {
	bootstrap_servers => "192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092"
	topics  => "nginx_log"
	type => "nginx_kafka"
	codec => "json"
	auto_offset_reset => "latest"
	decorate_events => true
    }
}

#filter{}

output{
    if "nginx_access" in [tags] {
	elasticsearch {
	    hosts => ["192.168.20.8:9200","192.168.20.18:9200"]
	    index => "nginx_access-%{+yyyy.MM.dd}"
	}
    }
    if "nginx_error" in [tags] {
	elasticsearch {
	    hosts => ["192.168.20.8:9200","192.168.20.18:9200"]
	    index => "nginx_error-%{+yyyy.MM.dd}"
	}
    }
	stdout { codec => rubydebug }
}

步骤三:启动一下,验证

 

总结:排错思路

1、ES节点是否都正常 使用netstat -natp|grep java 查看9200和9300是否开启

2、filebeat作为生产者将数据推送到kafka,查看kafka中的topic是否有生成

3、在logstash中添加stdout输出,如果屏幕有内容,那么表示kafka与logstash对接成功了

4、filebeat、logstash的配置多次检查

5、环境问题,比如安全机制、防火墙等

6、如果是多次实验使用相同的nginx日志,可以删除/usr/share/logstash/data的.lock隐藏文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1404094.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Emgu CV教程】5.7、几何变换之LogPolar()极坐标变换

上一篇讲完了LinearPolar()函数用法,Emgu CV里面还有一个LogPolar()函数,它是这样定义的: public static void LogPolar(IInputArray src, // 输入图像IOutputArray dst, // 输出图像PointF center, // 极坐标变换中心,一般就是图像的中心d…

Sqoop数据传输中的常见挑战及其解决方法

Sqoop是一个用于将数据传输到Hadoop生态系统的强大工具,但在实际使用中,可能会面临一些挑战。本文将深入探讨Sqoop数据传输中的常见挑战,并提供详细的示例代码和全面的解决方法,以帮助大家更好地克服这些挑战。 常见挑战1&#x…

html 3D 倒计时爆炸特效

下面是代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>HTML5 Canvas 3D 倒计时爆炸特效DEMO演示</title><link rel"stylesheet" href"css/style.css" media"screen&q…

《移动通信原理与应用》——QPSK调制解调仿真

目录 一、QPSK调制与解调流程图&#xff1a; 二、仿真运行结果&#xff1a; 三、MATLAB仿真代码&#xff1a; 一、QPSK调制与解调流程图&#xff1a; QPSK调制流程图&#xff1a; QPSK解调流程图&#xff1a; 二、仿真运行结果&#xff1a; 1、Figure1:为发送端比特流情…

Python 新版来袭!3.12.0 安装教程!!

Python是一门面向对象的计算机程序设计语言&#xff0c;以简洁和优雅著称&#xff0c;可以用于网络爬虫、web开发、人工智能、机器学习、数据挖掘及分析等工作&#xff0c;是目前最受欢迎的编程语言之一。 目前常见的Python版本有Python2和Python3&#xff0c;Python3不向下&a…

HQL,SQL刷题简单查询,基础,尚硅谷

今天刷SQL简单查询&#xff0c;大家有兴趣可以刷一下 目录 相关表数据&#xff1a; 题目及思路解析&#xff1a; 总结归纳&#xff1a; 知识补充&#xff1a; 关于LIKE操作符/运算符 LIKE其他使用场景包括 LIKE模糊匹配情况 相关表数据&#xff1a; 1、student_info表 2、sc…

JDK8新特性(一)集合之 Stream 流式操作

1.Stream流由来 首先我们应该知道&#xff1a;Stream流的出现&#xff0c;主要是用在集合的操作上。在我们日常的工作中&#xff0c;经常需要对集合中的元素进行相关操作。诸如&#xff1a;增加、删除、获取元素、遍历。 最典型的就是集合遍历了。接下来我们先举个例子来看看 J…

8.前端--CSS-显示模式

元素的显示模式 元素显示模式就是元素&#xff08;标签&#xff09;以什么方式进行显示&#xff0c;比如<div>自己占一行&#xff0c;比如一行可以放多个<span>。 1.块元素 常见的块元素 常见的块元素&#xff1a;<h1>~<h6>、<p>、<div>、…

sqlmap使用教程(2)-连接目标

目录 连接目标 1.1 设置认证信息 1.2 配置代理 1.3 Tor匿名网络 1.4 检测WAF/IPS 1.5 调整连接选项 1.6 处理连接错误 连接目标 场景1&#xff1a;通过代理网络上网&#xff0c;需要进行相应配置才可以成功访问目标主机 场景2&#xff1a;目标网站需要进行身份认证后才…

【立创EDA-PCB设计基础】5.布线设计规则设置

前言&#xff1a;本文详解布线前的设计规则设置。经过本专栏中的【立创EDA-PCB设计基础】前几节已经完成了布局&#xff0c;接下来开始进行布线&#xff0c;在布线之前&#xff0c;要设置设计规则。 目录 1.间距设置 1.1 安全间距设置 1.2 其它间距设置 2.物理设置 2.1 导…

Oracle Linux 8.9 安装图解

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任&#xff0c;图解仅供参考&#xff0c;请悉知&#xff01;本次安装图解是在一个全新的演示环境下进行的&#xff0c;演示环境中没有任何有价值的数据&#xff0c;但这并不代表摆在你面前的环境也是如此。生产环境…

nodejs前端项目的CI/CD实现(二)jenkins的容器化部署

一、背景 docker安装jenkins&#xff0c;可能你会反问&#xff0c;这太简单了&#xff0c;有什么好讲的。 我最近就接手了一个打包项目&#xff0c;它是一个nodejs的前端项目&#xff0c;jenkins已在容器里部署且运行OK。 但是&#xff0c;前端组很追求新技术&#xff0c;不…

联邦学习:密码学 + 机器学习 + 分布式 实现隐私计算,破解医学界数据孤岛的长期难题

联邦学习&#xff1a;密码学 机器学习 分布式 提出背景&#xff1a;数据不出本地&#xff0c;又能合力干大事联邦学习的问题联邦学习架构 分布式机器学习&#xff1a;解决大数据量处理的问题横向联邦学习&#xff1a;解决跨多个数据源学习的问题纵向联邦学习&#xff1a;解决…

2023年12月青少年机器人技术等级考试(六级)理论综合试卷

2023年12月青少年机器人技术等级考试&#xff08;六级&#xff09;理论综合试卷 单选题 第 1 题 单选题 IPv6地址长度及其地址分隔符分别是&#xff1f;&#xff08; &#xff09; A.32 . B.128 . C.32 : D.128 : 第 2 题 单选题 浏览网页时&#xff0c;使用应用层的…

verde生成网格坐标

文章目录 网格坐标区域调整 Verde是Python用于地理空间数据处理的一个库&#xff0c;由于采用了一些机器学习的方法&#xff0c;所以除了科学计算三件套之外&#xff0c;还需要基于sklearn模块。考虑到依赖关系&#xff0c;这里比较推荐用conda安装。 conda install verde --c…

第二节 K8S 的架构

第二节 K8S 的架构 K8S 架构图如下: 官方文档: https://kubernetes.io/docs/concepts/architecture/ kube-api-server 是集群的核心&#xff0c; 是k8s中最重要的组件&#xff0c; 因为它是实现声明式api的关键, 整个集群的入口,所有请求都要经过它, api接口服务. kubernetes…

Linux 快速构造大数据文件

文章目录如下 1. 如何生成数据文件 2. 使用 yes 命令构造数据 2.1. 基本用法 2.2. 构造数据文件 3. 使用 awk 命令构造数据 3.1. 基本用法 3.2. awk 循环输出 3.3. awk 指定分隔符 3.4. awk 随机数 3.5. awk 随机字符 3.6. awk 构造数据 4. 总结 1. 如何生成数据文…

【剑指offer】重建二叉树

&#x1f451;专栏内容&#xff1a;力扣刷题⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、题目描述1、题目2、示例 二、题目分析1、递归2、栈 一、题目描述 1、题目 剑指offer&#xff1a;重建二叉树 给定节…

opencv#27模板匹配

图像模板匹配原理 例如给定一张图片&#xff0c;如上图大矩阵所示&#xff0c;然后给定一张模板图像&#xff0c;如上图小矩阵。 我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域&#xff0c;…

LeetCode 48 旋转图像

题目描述 旋转图像 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4…