引用内容来自曹天元的《上帝掷骰子吗?:量子物理史话》,其余内容来自课程。
牛顿光的色散实验
色散实验是牛顿所做的有名的实验之一。实验的情景在一些科普读物里被渲染得令人印象深刻:炎热难忍的夏天,牛顿却戴着厚重的假发待在一间小屋里。窗户全都被封死了,所有的窗帘也被拉上,屋子里面又闷又热,一片漆黑,只有一束亮光从一个特意留出的小孔射进来。牛顿不顾身上汗如雨下,全神贯注地在屋里走来走去,并不时地把手里的一个三棱镜插进那个小孔里。每当三棱镜被插进去的时候,原来的那束白光就不见了,而在屋里的墙上映射出一条长长的彩色宽带:颜色从红一直到紫。这当然是一种简单得过分的描述,不过正是凭借这个实验,牛顿得出了白色光是由七彩光混合而成的结论。
然而在牛顿的理论里,光的复合和分解被比喻成不同颜色微粒的混合和分开。他的文章被交给一个三人评议会审阅,胡克和波义耳正是这个评议会的成员,胡克对此观点进行了激烈的抨击。胡克声称,牛顿论文中正确的部分(也就是色彩的复合)是窃取了他1665年的思想,而牛顿“原创”的微粒说则不值一提,仅仅是“假说”而已。这个批评虽然不能说全无道理,但很可能只是胡克想给牛顿一个下马威。作为当时在光学和仪器方面独一无二的权威,胡克显然没把牛顿这个毛头小伙放在眼里,他后来承认说,自己只花了3~4小时来阅读牛顿的文章。不过胡克显然没有意识到,这次的对手是那样与众不同。
牛顿大概有生以来都没受过这样直截了当的批评。他勃然大怒,花了整整四个月时间写了一篇洋洋洒洒的长文,在每一点上都进行了反驳。胡克惨遭炮轰,他的名字出现在第一句里,出现在最后一句里,在中间更是出现了25次以上。韦斯特福尔(R.S.Westfall)在那本名扬四海的牛顿传记《决不停止》(Never at Rest)中描述道:“(牛顿)实际上用胡克的名字穿起了一首叠句诗。”而且越到后来,用词越是尖刻难听。就这样,胡克大言不惭在前,牛顿恶语相讥于后,两个人都格外敏感且心胸狭窄,最终不可避免地成为对方毕生的死敌。牛顿的狂怒并没有就此平息,他对每一个批评都报以挑衅性的回复,包括用词谨慎的惠更斯在内。他撤回了所有原本准备在皇家学会发表的文章,到了1673年3月,他甚至在一封信里威胁说准备退出学会。最后,牛顿中断与外界的通信,让自己在剑桥与世隔绝。
其实在此之前,牛顿的观点还是在微粒和波动之间有所摇摆的,并没有完全否认波动说。1665年,当胡克发表他的观点时,牛顿还刚刚从剑桥三一学院毕业,也许还在苹果树前面思考他的万有引力问题呢。在牛顿最初的理论中,微粒只是一个临时的假设而已,根本不是主要论点。即使在胡克最初的批评之后,牛顿也还是作出了一定的妥协,给波动说提出了一些非常重要的改进意见。但在此之后,牛顿与胡克的关系进一步恶化,他最终开始一面倒地支持微粒说。这究竟是因为报复心理,还是因为科学精神,今天已经无法得知了,想来两方面都有吧。至少我们知道牛顿的性格是以小气和斤斤计较而闻名的,这从以后他和莱布尼兹关于微积分发明的争论中也可见一斑。
在牛顿和胡克都暂时沉寂下去的时候,波动方面军在另一个国家开始了他们的现代化进程——用理论来装备自己。荷兰物理学家惠更斯(Christiaan Huygens)登上舞台,成为了波动说的主将。惠更斯是数学理论方面的天才,他继承了胡克的思想,认为光是一种在以太里传播的纵波,并引入了“波前”等概念,成功地证明和推导了光的反射和折射定律。他的波动理论虽然还十分粗略,但取得的成就却是杰出的。当时随着光学研究的不断深入,新的战场不断被开辟。1669年,丹麦的巴塞林那斯(E.Bartholinus)发现当光通过方解石晶体时,会出现双折射现象。而到了1675年,牛顿在皇家学会报告说,如果让光通过一块大曲率凸透镜照射到光学平玻璃板上,会在透镜与玻璃平板接触处出现一组彩色的同心环条纹,也就是著名的“牛顿环”(对图像和摄影有兴趣的朋友一定知道)。
惠更斯将他的理论应用于这些新发现上面,发现他的波动军队可以轻易地占领这些新辟的阵地,只需要做小小的改制即可(比如引进椭圆波的概念)。1690年,惠更斯的著作《光论》(Traite de la Lumiere)出版,标志着波动说在这个阶段到达了一个兴盛的顶点。
但不幸的是,波动方面军暂时的得势看来注定要成为昙花一现的泡沫,因为在他们的对手那里站着一个光芒四射的伟大人物——艾萨克·牛顿先生(而且很快就要被冠上爵士的头衔)。这位科学巨人——不管他是出于什么理由——已经决定要给予波动说的军队以毫不留情的致命打击。牛顿对胡克恨之入骨,只要胡克还在皇家学会一天,他就基本不去那里开会。胡克终于在1703年众叛亲离地死去了——所有的人都松了一口气。这也为牛顿不久后顺理成章地当选为皇家学会主席铺平了道路,他今后将用铁腕手段统治这个协会长达24年之久。胡克死后第二年,也就是1704年,牛顿终于出版了他的煌煌巨著《光学》(Opticks)。在时间上这是一次精心的战术安排,其实这本书早就完成了。牛顿在介绍中写道:“为了避免在这些事情上引起争论,我推迟了这本书的付梓时间。而且要不是朋友们一再要求,还将继续推迟下去。”任谁都看得出胡克在其中扮演的角色。《光学》是一本划时代的作品,几乎是可以与《原理》并列的伟大杰作,在之后整整100年内,它都被奉为不可动摇的金科玉律。牛顿在其中详尽地阐述了光的色彩叠合与分散,从粒子的角度解释了薄膜透光、牛顿环以及衍射实验中发现的种种现象。他驳斥了波动理论,质疑如果光和声音同样是波,为什么光无法像声音那样绕开障碍物前进。他也对双折射现象进行了研究,提出了许多用波动理论无法解释的问题。而粒子方面的基本困难,牛顿则以他的天才加以解决。他从波动对手那里吸收了许多东西,比如将波的一些有用的概念如振动、周期等引入微粒论,从而很好地解答了牛顿环的难题。同时,牛顿把微粒说和他的力学体系结合在了一起,使得这个理论顿时呈现出无与伦比的力量。
这完全是一次摧枯拉朽般的打击。那时的牛顿已经不再是那个可以被人随便质疑的青年。那时的牛顿,已经是出版了《数学原理》的牛顿,已经是发明了微积分的牛顿。那个时候,他已经是国会议员、造币局局长、皇家学会主席,已经成为科学史上神话般的人物。在世界各地,人们对他的力学体系顶礼膜拜,仿佛得到了上帝的启示。而波动说则群龙无首(惠更斯也早于1695年去世),这支失去了领袖的军队还没有来得及在领土上建造几座坚固一点的堡垒,就遭到了毁灭性的打击。他们惊恐万状,溃不成军,几乎在一夜之间丧失了所有的阵地。这一方面是因为波动自己的防御工事有不足之处,它的理论仍然不够完善,另一方面也实在是因为对手的实力过于强大——牛顿作为光学界的泰斗,他的才华和权威是不容置疑的。第一次波粒战争就这样以波动的惨败而告终,战争的结果是微粒说牢牢占据了物理界的主流。波动被迫转入地下,在长达整整一个世纪的时间里都抬不起头来。然而,它却仍然没有被消灭,惠更斯等人所做的开创性工作使得它仍然具有顽强的生命力,默默潜伏着以待东山再起。
托马斯·杨的双缝干涉实验
故事
杨研究了人体眼睛的构造,开始接触光学上的一些基本问题,并最终形成了光是波动的想法。杨的这个认识,源于波动中所谓的“干涉”现象。我们都知道,普通的物质是具有累加性的,一滴水加上一滴水一定是两滴水,而不会一起消失。但是波动就不同了,一列普通的波,有着波的高峰和波的谷底,如果两列波相遇,当它们正好都处在高峰时,那么叠加起来的这个波就会达到两倍的峰值,如果都处在低谷时,叠加的结果就会是两倍深的谷底。但是,等等,如果正好一列波在它的高峰,另一列波在它的谷底呢?答案是它们会互相抵消。如果两列波在这样的情况下相遇(物理上叫作“反相”),那么在它们重叠的地方将会波平如镜,既没有高峰,也没有谷底。这就像一个人把你往左边拉,另一个人用相同的力气把你往右边拉,结果是你会站在原地不动。
托马斯·杨在研究牛顿环的明暗条纹的时候,被这个关于波动的想法给深深打动了。为什么会形成一明一暗的条纹呢?一个想法渐渐地在杨的脑海里成形:用波来解释不是很简单吗?明亮的地方,那是因为两道光正好是“同相”的,它们的波峰和波谷正好相互增强,结果造成了两倍光亮的效果(就好像有两个人同时在左边或者右边拉你);而黑暗的那些条纹,则一定是两道光处于“反相”,它们的波峰、波谷相对,正好互相抵消了(就好像两个人同时往两边拉你)。这一大胆而富于想象的见解使杨激动不已,他马上着手进行了一系列的实验,并于1801年和1803年分别发表论文报告,阐述了如何用光波的干涉效应来解释牛顿环和衍射现象,甚至通过他的实验数据,计算出了光的波长应该在1/60000~1/36000英寸之间。
1807年,杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并第一次描述了他那个名扬四海的实验:光的双缝干涉。后来的历史证明,这个实验完全可以跻身于物理学史上最经典的前五个实验之列。而在今天,它更是理所当然地出现在每一本中学物理的教科书上。
杨的实验手段极其简单:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的干涉条纹。
杨的著作点燃了革命的导火索,物理史上的“第二次波粒战争”开始了。波动方面军在经过了百年的沉寂之后,终于又回到了历史舞台。但它当时的日子并不好过,在微粒大军仍然一统天下的年代,波动的士兵们衣衫褴褛,缺少后援,只能靠游击战来引起人们对它的注意。杨的论文开始受尽了权威们的嘲笑和讽刺,被攻击为“荒唐”和“不合逻辑”,在近20年间竟然无人问津。杨为了反驳专门撰写了论文,但却无处发表,只好印成小册子,据说发行后“只卖出了一本”。
不过,虽然高傲的微粒仍然沉醉在牛顿时代的光芒中,一开始并不把起义的波动叛乱分子放在眼里。但它很快就发现,这些反叛者虽然人数不怎么多,服装并不那么整齐,但是它们的武器今非昔比。在受到了几次沉重的打击后,干涉条纹这门波动大炮的杀伤力终于惊动整个微粒军团。这个简单巧妙的实验所揭示出来的现象证据确凿,几乎无法反驳。无论微粒怎么努力,也无法躲开对手的无情轰炸:它就是难以说明两道光叠加在一起怎么会反而造成黑暗。而波动的理由却是简单而直接的:两条缝距离屏幕上某点的距离会有所不同。当这个距离差是波长的整数倍时,两列光波正好互相加强,就在此形成亮带。反之,当距离差刚好造成半个波长的相位差时,两列波就正好互相抵消,这个地方就变成暗带。理论计算出的明暗条纹距离和实验值分毫不差。
批注:感觉和上课PPT+作业+考试模式不同的地方在于能够把联系给揭示出来,能够整体地、联系地看这个知识所处的位置,比如说,读完这篇我就特别想去了解麦克斯韦方程,但其实我们上学期就学习了麦克斯韦方程,只能说学会了如何做题,但是并不会从“麦克斯韦方程”之于光的波粒二象性之争来讲解这个知识吧,唉。得把二者结合起来才行。
计算
yysy,我觉得看了上面那段话,理解这几幅图其实就不是很困难了?不过还是有一点需要解释的,即相位差的公式是怎么来的:
,我们知道的是,表达的是两束光走的路径的长度之差,然后除以一个周期里光的波长,我们就可以知道波段之差,然后再乘上2就是相位之差了。
双缝的原理弄明白了,多缝就自然可以解决了~
菲涅尔的光的衍射实验
在节节败退后,微粒终于发现自己无法抵挡对方的进攻,于是它采取了以攻代守的战略。许多对波动说不利的实验证据被提出来以证明波动说的矛盾,其中最为知名的就是马吕斯(Étienne Louis Malus)在1809年发现的偏振现象,这一现象和已知的波动论有抵触的地方。两大对手开始相持不下,但是各自都没有放弃自己获胜的信心。杨在给马吕斯的信里说:“……您的实验只是证明了我的理论有不足之处,但没有证明它是虚假的。”
决定性的时刻在1819年到来了。最后的决战起源于1818年法国科学院的一个悬赏征文竞赛,竞赛的题目是利用精密的实验确定光的衍射效应以及推导光线通过物体附近时的运动情况。竞赛评委会由许多知名科学家组成,其中有比奥(J.B.Biot)、拉普拉斯(Pierre Simon de Laplace)和泊松(S.D.Poission),都是积极的微粒说拥护者。从这个评委会的本意来说,他们或许是希望通过微粒说的理论来解释光的衍射以及运动,以打击波动理论。
但是戏剧性的情况出现了:一个不知名的法国年轻工程师——菲涅尔(Augustin Fresnel,当时他才31岁)向评委会提交了一篇论文。在这篇论文里,菲涅尔采用了光是一种波动的观点,并以严密的数学推理,极为圆满地解释了光的衍射问题。他的体系洋洋洒洒,天衣无缝,完美无缺,令评委会成员为之深深惊叹。泊松并不相信这一结论,对它进行了仔细的审查,结果发现当把这个理论应用于圆盘衍射的时候,在阴影中间将会出现一个亮斑。这在泊松看来是十分荒谬的,影子中间怎么会出现亮斑呢?这差点使得菲涅尔的论文中途夭折。但菲涅尔的同事,评委之一的阿拉果(François Arago)在关键时刻坚持要进行实验检测,结果发现真的有一个亮点如同奇迹一般地出现在圆盘阴影的正中心,位置亮度和理论符合得相当完美。
菲涅尔理论的这个胜利成了第二次波粒战争的决定性事件。他获得了那一届的科学奖(Grand Prix),同时一跃成为可以和牛顿、惠更斯比肩的光学界传奇人物。圆盘阴影正中的亮点(后来被误导性地称作“泊松亮斑”)成了波动军手中威力不下于干涉条纹的重武器,给了微粒势力以致命的一击,起义者的烽火很快就燃遍了光学的所有领域。但是,光的偏振问题却仍旧没有得到解决,微粒依然躲在这个掩体后面负隅顽抗,不停地向波动开火。为此,菲涅尔不久后又作出了一个石破天惊的决定:他革命性地假设光是一种横波(也就是类似水波那样,振子做相对传播方向垂直运动的波),而不像从胡克以来大家所一直认为的那样,是一种纵波(类似弹簧波,振子做相对传播方向水平运动的波)。1821年,菲涅尔发表了题为《关于偏振光线的相互作用》的论文,用横波理论成功地解释了偏振现象,攻克了战役中最难以征服的据点。
然而不幸的微粒军团在经历了1819年的莫斯科严冬之后,又于1850年遭遇了它的滑铁卢。这一年的5月6日,傅科(Jean-Bernard-Léon Foucault,他后来以“傅科摆”实验而闻名)向法国科学院提交了他关于光速测量实验的报告。在准确地得出光在真空中的速度之后,他又进行了水中光速的测量,发现这个值小于真空中的速度,只有前者的3/4。这一结果彻底宣判了微粒说的死刑,波动论终于在100多年后革命成功,推翻了微粒王朝,登上了物理学统治地位的宝座。在胜利者盛大的加冕典礼中,第二次波粒战争随着微粒的战败而尘埃落定。
但菲涅尔的横波理论却留给波动一个尖锐的难题,就是以太的问题。光是一种横波的事实已经十分清楚,它的传播速度也得到了精确测量,这个数值达到了30万公里/秒,是一个惊人的高速。通过传统的波动论,我们不难得出它的传播媒介的性质:这种媒介必定是一种异常坚硬的固体!它比最硬的物质金刚石还要硬不知多少倍。然而事实是从来就没有任何人能够看到或者摸到这种“以太”,也没有实验测定到它的存在。星光穿越几亿亿公里的以太来到地球,然而这些坚硬无比的以太却不能阻挡任何一颗行星或者彗星的运动,哪怕是灰尘也不行!波动对此的解释是以太是一种刚性的粒子,但它却是如此稀薄,以致物质在穿过它们时几乎不受任何阻力,“就像风穿过一小片丛林”(托马斯·杨语)。以太在真空中也是绝对静止的,只有在透明物体中,可以部分地被拖曳(菲涅尔的“部分拖曳假说”)。这个观点其实是十分牵强的,但是波动说并没有为此困惑多久,因为更加激动人心的胜利很快就到来了。伟大的麦克斯韦于1856年、1861年和1865年发表了三篇关于电磁理论的论文,这是一份开天辟地的工作,他在牛顿力学的大厦上又完整地建立起了另一座巨构,而且其辉煌灿烂绝不亚于前者。麦克斯韦的理论预言,光其实只是电磁波的一种。这段文字是他在1861年的第二篇论文《论物理力线》里面特地用斜体字写下的。而我们在本章的一开始已经看到,这个预言是怎样由赫兹在1887年用实验予以证实的。波动说突然发现,它已经不仅仅是光领域的统治者,而且业已成为整个电磁王国的最高司令官。波动的光辉到达了顶点,只要站在大地上,它的力量就像古希腊神话中的巨人那样,是无穷无尽而不可战胜的。而它所依靠的大地,就是麦克斯韦不朽的电磁理论。
待续,主要是还没讲到衍射。。。