拿捏!相关性分析,一键出图!皮尔逊、斯皮尔曼、肯德尔、最大互信息系数(MIC)、滞后相关性分析,直接运行!独家可视化程序!

news2025/1/15 12:59:04

适用平台:Matlab2020及以上

相关性分析是一种统计方法,用于衡量两个或多个变量之间的关系程度。通过相关性分析,我们可以了解变量之间的相互关系、依赖性,以及它们是如何随着彼此的变化而变化的。相关性分析通常包括计算相关系数或其他衡量关联度的指标。

①量化特征之间的关联程度:通过相关系数的值,我们可以判断它们的关系是强烈的、中等还是弱。

②特征降维:在大规模数据集中,相关性分析可以帮助我们过滤掉与目标序列关系较弱的变量,从而聚焦于关键的特征。

降维的方法:皮尔逊(Pearson)、斯皮尔曼(Spearman)、肯德尔(Kendall)、最大互信息系数(MIC)、滞后相关性。分别绘制出相关性矩阵,并且矩阵中每个值我们都用饼图表示,看着更加高大上!加深审稿人对文章的好感。

下面分别介绍这几种相关性分析的特点:

皮尔逊相关系数:皮尔逊相关系数衡量的是两个变量之间的线性关系。它通过计算协方差和两个变量的标准差来完成。皮尔逊相关系数在处理线性关系强的数据时非常有效,取值范围在 -1 到 1 之间,正值表示正相关,负值表示负相关,0 表示无关。

斯皮尔曼相关系数:斯皮尔曼相关系数是一种基于秩次的非参数方法,用于衡量两个变量之间的单调关系。首先将变量的原始数据转化为秩次,然后计算秩次的皮尔逊相关系数。适用于非线性关系,对异常值不敏感,取值范围也在 -1 到 1 之间。

肯德尔相关系数:计算过程类似斯皮尔曼相关系数,肯德尔相关系数也是基于秩次的非参数方法。它测量的是两个变量的等级之间的一致性程度,而不是直接测量它们的秩次之间的线性关系。适用于非线性关系,对异常值不敏感,常用于秩次数据的相关性分析。

最大互信息系数(MIC):最大互信息系数是一种非参数方法,用于测量两个变量之间的非线性关系。它通过将数据空间划分为网格,并计算每个网格中的互信息来完成。对于非线性关系的探测性能较好,但计算较复杂。

滞后相关性:滞后相关性衡量的是两个变量之间在时间上的延迟关系。通过计算变量在不同时间点上的相关性来确定它们是否存在滞后关系。适用于时间序列数据,能够揭示时间上的因果关系。

总结:上述方法都有其适用的场景和局限性。选择哪种方法取决于你们的数据特点以及你的侧重点问题。线性相关性可以使用皮尔逊相关系数,非线性或秩次相关性可以考虑斯皮尔曼和肯德尔相关系数。滞后相关性适用于时间序列数据,而MIC较适合处理非线性关系。

部分代码:

%% 计算互相关系数(滞后相关性)% 来自公众号《创新优化及预测代码》
n2=10; %滞后时序
y=data(:,end);
x=data(:,1:end-1);
%计算x在滞后或超前0-10个时段下与y的相关性
for i=1:size(x,2)
    croc(:,i)=crosscorr(y,x(:,i),'NumLags',n2);
end
croc=croc';% croc中行表示变量,列表述滞后序列-n2,-n2+1,...,0,1,...,n2-1,n2 下的x与y的相关系数

%% 绘制热力图
[N, D]=size(data);

%% 皮尔逊相关系数 % 来自公众号《创新优化及预测代码》
% 绘制皮尔逊相关系数二维图,使用hsv颜色映射
figure;
imagesc(pearson_corr);
colorbar;
% 颜色映射
color = hsv(200);
colormap(color(30:end-30,:));
title('皮尔逊相关系数');
xlabel('特征');
ylabel('特征');

% 在图中添加皮尔逊相关系数的标签
for i = 1:size(pearson_corr, 1)
    for j = 1:size(pearson_corr, 2)
        text(j, i, num2str(pearson_corr(i, j), '%.2f'), 'Color', 'k', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');
    end
end

% 饼图 % 来自公众号《创新优化及预测代码》
pieplot(pearson_corr);
colormap(color(30:end-30,:));

%% 绘制肯德尔相关系数二维图,使用Jet颜色映射 % 来自公众号《创新优化及预测代码》
figure;
imagesc(kendall_corr);
colorbar;
color = jet(200);
colormap(color(60:end-50,:));
title('肯德尔相关系数');
xlabel('特征');
ylabel('特征');

% 在图中添加肯德尔相关系数的标签
for i = 1:size(kendall_corr, 1)
    for j = 1:size(kendall_corr, 2)
        text(j, i, num2str(kendall_corr(i, j), '%.2f'), 'Color', 'k', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle');
    end
end

% 饼图
pieplot(kendall_corr);
colormap(color(60:end-50,:));

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1401167.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DBA技术栈MongoDB: 数据增改删除

该博文主要介绍mongoDB对文档数据的增加、更新、删除操作。 1.插入数据 以下案例演示了插入单个文档、多个文档、指定_id、指定多个索引以及插入大量文档的情况。在实际使用中,根据需求选择适合的插入方式。 案例1:插入单个文档 db.visitor.insert({…

【Python】--- 基础语法(1)

目录 1.变量和表达式2.变量和类型2.1变量是什么2.2变量的语法2.3变量的类型2.3.1整数2.3.2浮点数(小数)2.3.3字符串2.3.4布尔2.3.5其他 2.4为什么要有这么多类型2.5动态类型特征 3.注释3.1注释的语法3.2注释的规范 结语 1.变量和表达式 对python的学习就…

数据库课程设计-图书管理系统数据库设计

目录 一、实验目的 二、实验内容 三、实验要求 四、实验设计 4.1需求分析 4.1.1系统目标 4.1.2功能需求 4.1.3性能需求 4.14界面需求 4.2概念模型设计 4.2.1 实体及联系 4.2.2 E-R图 4.3 逻辑设计 4.3.1 E-R模型向关系模型的转换 4.3.2 数据库逻辑结构 4.3.3数据库模型函数依赖…

Elasticsearch各种高级文档操作

本文来记录下Elasticsearch各种文档操作 文章目录 初始化文档数据查询所有文档匹配查询文档关键字精确查询文档多关键字精确查询文档字段匹配查询文档指定查询字段查询文档过滤字段查询文档概述指定想要显示的字段示例指定不想要显示的字段示例 组合查询文档范围查询文档概述使…

74.MySQL 分页原理与优化(下)

文章目录 前言一、一次分页查询的演进二、分页数据在不同页反复出现的坑 前言 上一篇文章介绍了分页原理与优化:73.MySQL 分页原理与优化(上) 但分页还有一个“坑”需要注意,本文细细道来,可能很多朋友都踩过这个坑还…

LOSS损失函数值是什么意思?

环境: Bert-VITS2-v2.3 问题描述: LOSS损失函数值是什么意思? 解决方案: 在机器学习和深度学习中,损失函数(Loss Function)用来衡量模型预测值与实际值之间的差异或误差。LOSS损失函数值是…

(Bean实例化的基本流程 )学习Spring的第六天

Bean实例化的基本流程 其实可以解释为三个过程: 1 . 有关Bean的信息被封装成一个map集合 : DeanDefinitionMap . key为Bean的名称 , value为有关<bena>标签的信息 2 . Spring框架对这个存储Bean信息的Map进行遍历 , 进行创建对象 , 把创建好的对象存储到另一个Map集合里…

08. Springboot集成webmagic实现网页爬虫

目录 1、前言 2、WebMagic 3、Springboot集成Webmagic 3.1、创建Springboot&#xff0c;并引入webmagic依赖 3.2、定义PageProcessor 3.3、元素选择 3.3.1、F12查看网页元素 3.3.2、元素选择 3.3.3、注意事项 4、小结 1、前言 在信息化的时代&#xff0c;网络爬虫已…

redis远程连接不上解决办法

问题描述&#xff1a; redis远程服务端运行在192.168.3.90计算机上&#xff0c;客户端计算机&#xff08;ip:192.168.3.110&#xff09;通过redsi-cli.exe客户端工具连接时&#xff0c;没有反应&#xff0c;连接不上。 如图所示&#xff1a; 解决步骤&#xff1a; 步骤一&…

二叉树进阶oj题目

二叉树进阶oj题目 两个结点的最近公共祖先前序中序&#xff08;中序后序&#xff09;还原二叉树 1、两个结点的最近公共祖先&#xff08;两种方法&#xff09; leetcode链接 题目描述&#xff1a;给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共…

web蓝桥杯真题--12、由文本溢出引发的“不友好体验”

背景介绍 通常情况下&#xff0c;为保证布局的稳定性&#xff0c;以及遵循在有限的空间展示更多内容的原则&#xff0c;页面的某块区域不会随内容的增多而无限增高或增宽&#xff0c;一般会有一个约束。 例如&#xff1a;整体元素过多可以使用滚动条&#xff1b;文字内容过多…

【Leetcode】接雨水(双指针、单调栈)

目录 &#x1f4a1;题目描述 &#x1f4a1;双指针解法 &#x1f4a1;单调栈解法 &#x1f4a1;题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 提示&#xff1a; n height.length1 < n…

CGLIB动态代理(AOP原理)(面试重点)

推荐先看JDK 动态代理&#xff08;Spring AOP 的原理&#xff09;&#xff08;面试重点&#xff09; JDK 动态代理与 CGLIB 动态代理的区别 JDK 动态代理有⼀个最致命的问题是其只能代理实现了接⼝的类. 有些场景下,我们的业务代码是直接实现的,并没有接⼝定义.为了解决这个问…

linux内核源码编译2.6失败

centos7环境 iso选择 https://mirrors.tuna.tsinghua.edu.cn/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-2009.iso 自带qemu&#xff0c;未实测是否可用 选择编译版本2.6 下载地址 遇到的编译错误解决 yum list | grep curses yum install ncurses-devel.x86_64 -y yum i…

十六进制转十进制

题目 public class Main {public static void main(String[] args) {String str "2021ABCD";int k 0;long sum 0;for(int istr.length()-1;i>0;i--,k) {char c str.charAt(i);if(c>A&&c<D) {int res c-A10;sum(long)res*Math.pow(16,k);}else…

【C++干货铺】C++11新特性——右值引用、移动构造、完美转发

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 左值与左值引用 右值与右值引用 左值引用和右值引用的比较 左值引用总结&#xff1a; 右值引用总结&#xff1a; 左值引用的作用和意义 右值引用的使用场景和…

elasticsearch备份恢复,elasticdump使用

准备环境 1. 将node-v10.23.1-linux-x64.tar.xz上传到服务器/usr/local目录下 2. tar xf node-v10.23.1-linux-x64.tar.xz 3. 将node_modules.tar.gz上传到服务器/usr/local目录 4. tar -zxvf node_modules.tar.gz 5. 设置NODE环境 5.1 vim /etc/profile export NODEJS_…

thinkphp+vue+mysql大学生心理健康测试分析系统g4i4o

学生心里测试分析系统由管理员和学生、教师交互构成。学生对于本系统的使用&#xff0c;学生可以通过系统注册、登录&#xff0c;修改个人信息&#xff0c;查看交流区、心理测试卷、新闻资讯等功能。 教师对于本系统的使用&#xff0c;教师可以通过系统注册、登录&#xff0c;修…

[VS2022代码推送到gitee远程仓库]

01_注册gitee账号 02_安装git和图形化界面工具 安装第一个软件&#xff1a; 下面一路Next 右击桌面-》更多选项中如果出现 表示安装成功。 安装第二个软件&#xff1a; 下一步到下面的页面 然后一直下一页 安装好的标志是右击鼠标-》更多选项中出现&#xff1a; 表示安装完成…

Ubuntu下安装Gazebo仿真器

Ubuntu下安装Gazebo仿真器 Gazebo仿真平台通常需要配合ROS使用&#xff0c;因此需要先安装ROS。可以参考ROS安装教程 首先安装一些必要的工具 sudo apt-get update sudo apt-get install lsb-release wget gnupg修改源 sudo wget https://packages.osrfoundation.org/gazebo…