视频异常检测论文笔记

news2024/11/24 19:47:23

看几篇中文的学习一下别人的思路

  • 基于全局-局部自注意力网络的视频异常检测方法
    • 主要贡献:
    • 网络结构
    • 注意力模块结构:
  • 融合自注意力和自编码器的视频异常检测
    • 主要贡献:
    • 网络结构
    • Transformer模块
    • 动态图
  • 融合门控自注意力机制的生成对抗网络视频异常检测
    • 贡献
    • 网络结构
    • 门控注意力机制

基于全局-局部自注意力网络的视频异常检测方法

文章信息:
在这里插入图片描述
链接:https://kns.cnki.net/kcms2/article/abstract?v=FY8FZShUIjGtR3ED9H4lwnExLaJ3z-kfwPv1HujOqotZMfpdRr-ETlKpVGwgsyGVblKfsr1kFyunmlxIeOIbLKc5dQB9iBqMESsg4AsfheeiZ1OQCWHX8K54W8OIaAeWuAxkpGlU5grzU6EtO2hBfA==&uniplatform=NZKPT&language=CHS

主要贡献:

  • 采用“双编码器-单解码器”的编解码混合结构,充分利用原始视频的多维信息,并通过自注意力模块实现有效的解码,从而使模型能够准确表示和理解视频数据。
  • 使用多源数据作为输入,充分利用运动和外观信息的互补,并综合考虑不同信息源以全面分析视频数据,从而更加准确地识别异常行为。
  • 提出一种基于全局-局部自注意力机制的视频异常检测方法,通过全局-局部自注意力机制综合考虑整体和局部的时序相关性,能够更好地理解视频序列中不同时间尺度的连续性,并保持局部上下文信息的一致性。
  • 对UCSD Ped2、CUHK Avenue和Shanghai Tech数据集进行测试,实验结果表明,本文方法的检测精度分别达到97.4%、86.8%和73.2%,而且与现有方法相比,本文方法明显提升了视频异常检测的能力和鲁棒性,为视频异常检测的深入研究和实际应用提供了一定支撑。

网络结构

主要是双编码器、注意力模块、解码器
在这里插入图片描述

注意力模块结构:

在这里插入图片描述

融合自注意力和自编码器的视频异常检测

文章信息:
在这里插入图片描述
文章链接:https://kns.cnki.net/kcms2/article/abstract?v=FY8FZShUIjGm28qSIBRR5HDmMGuL1Feyl67y-wYwJ7nUXtdTVPSuX1vlTzLmRbNr19nM_RgUgZ8iummOVivtWsEB3RYYntv9F_eHFlXMljXSQIw_VGFiLHjiWXJp5tpRbYb6ldGrw0V5wrJuHAYsgw==&uniplatform=NZKPT&language=CHS

主要贡献:

  • 提出了基于Transformer和U-Net混合网络的视频异常检测算法,将基于自注意力机制的Transformer嵌入U-Net网络学习正常事件的局部和全局时空信息,捕捉更丰富的特征信息。
  • 现有的异常检测数据集大多基于室外远景运动信息,本文进一步收集了针对异常分析的室内动作数据集。针对周期性的近景手部动作,除了传统的重建损失外,本文进一步引入动态图约束引导网络关注运动轨迹区域。
  • 本文在4个室外和1个室内数据集上进行了实验,与现有方法相比本文方法的异常检测性能更好。

网络结构

在这里插入图片描述

Transformer模块

在这里插入图片描述
Transformer模块的结构如图2(b)所示,其中Transformer编码器由N层多头自注意力块(multi-head self-attention)和多层感知器块(multi-layer perceptron,MLP)组成,通过对远距离依赖建模从而提高网络的特征表达能力。每个块前后都应用了层归一化(layer norm)和残差连接。最后,将Transformer模块得到的隐藏特征z调整为U-Net编码器原来的尺寸,解码器对编码特征进行上采样,并与编码器中相同分辨率的低层特征融合,将全局空间信息与局部细节信息结合,从而捕捉更丰富的特征信息。

动态图

引入了动态图作为损失函数的注意力图,如下公式所示,作者将动态图引入到了损失函数中:
在这里插入图片描述

融合门控自注意力机制的生成对抗网络视频异常检测

文章信息:
在这里插入图片描述
链接:https://kns.cnki.net/kcms2/article/abstract?v=FY8FZShUIjFwKn5KHOciqgG5THwAEGgaTBLxJ92Zpr0dZoYvsOg2EekwJInek5ONBguXDE9m-DDN5MIj_se3HnRznWkQf-0-qlJM_qXO8NU2536G3JBBj4IsgnAvskYTq99tlFpxTlJUhbz8hw-Rqg==&uniplatform=NZKPT&language=CHS

贡献

  • 考虑视频序列帧之间的时间和空间2维关系,提出一种改进的异常行为检测模型。利用生成对抗网络中的生成模块对视频中的空间特征进行提取,利用LiteFlownet光流网络对运动信息的时间特征进行提取,引入门控自注意力机制对特征图进行加权处理,实现了视频序列之间时空特征更有效的表达。
  • 引入门控自注意力机制,逐层对U-net采样过程中的特征进行加权计算。该自注意力机制在视频帧的单层特征中对远距离且具有空间相关性的特征进行建模,可自动寻找图像特征中的相关部分,提高对视频帧中时间和空间两个维度的特征响应。
  • 选用LiteFlownet光流网络对运动信息进行提取,得到视频帧之间的时间关联,进一步提高了该模型的检测性能。

网络结构

在这里插入图片描述

门控注意力机制

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400528.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kafka框架详解

Kafka 1、Kafka介绍 ​ Kafka是最初由linkedin公司开发的,使用scala语言编写,kafka是一个分布式,分区的,多副本的,多订阅者的消息队列系统。 2、Kafka相比其他消息队列的优势 ​ 常见的消息队列:Rabbit…

【Docker篇】详细讲解容器相关命令

🎊专栏【Docker】 🍔喜欢的诗句:更喜岷山千里雪 三军过后尽开颜。 🎆音乐分享【如愿】 🎄欢迎并且感谢大家指出小吉的问题🥰 文章目录 🛸容器🌹相关命令🍔案例⭐创建并运…

大模型微调实战笔记

大模型三要素 1.算法:模型结构,训练方法 2.数据:数据和模型效果之间的关系,token分词方法 3.算力:英伟达GPU,模型量化 基于大模型对话的系统架构 基于Lora的模型训练最好用,成本低好上手 提…

Mysql流程控制函数

1概述 Mysql中的流程控制函数非常重要,可以根据不同的条件,执行不同的流程转换,可以在SQL语句中实现不同的条件选择。MySQL中的流程处理函数主要包括IF()、IFNULL()和CASE()函数。 1.1 IF函数 SELECT IF(1 > 0, 正确, 错误);1.2 IFNULL…

ROS第 12 课 Launch 启动文件的使用方法

文章目录 第 12 课 Launch 启动文件的使用方法1.本节前言2.Lanuch 文件基本语法2.2 参数设置2.3 重映射嵌套 3.实操练习 第 12 课 Launch 启动文件的使用方法 1.本节前言 我们在前面的教程里面通过命令行来尝试运行新的节点。但随着创建越来越复杂的机器人系统中,打…

idea运行卡顿优化方案

文章目录 前言一、调整配置1. idea.properties2. idea.vmoptions3.heap size4.Plugins5.Inspections 总结 前言 本人电脑16G内存,处理器i7 10代,磁盘空间也够用,整体配置够用,但运行idea会很卡,记录优化过程&#xff…

【JavaEE】文件操作与IO

作者主页:paper jie_博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文于《JavaEE》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精力)打造&…

vue3+vite:封装Svg组件

前言 在项目开发过程中,以svg图片引入时,会遇到当hover态时图片颜色修改的场景,我们可能需要去引入另一张不同颜色的svg图片,或者用css方式修改,为了方便这种情况,需要封装svg组件来自定义宽高和颜色&…

IaC基础设施即代码:Terraform 进行 lifecycle 生命周期管理

目录 一、实验 1.环境 2.Terraform 创建网络资源 3.Terraform 进行 create_before_destroy(销毁前创建新资源) 4.Terraform 进行 prevent_destroy(防止资源被销毁) 5.Terraform 进行 ignore_changes(忽略资源的差…

记录汇川:H5U与Factory IO测试15

主程序: 子程序: IO映射 子程序: 出料程序 子程序: 视觉判断 子程序: 自动程序 Factory IO配置: 实际动作如下: Factory IO测试15

【本科生机器学习】【北京航空航天大学】课题报告:支持向量机(Support Vector Machine, SVM)初步研究【上、原理部分】

说明: (1)、仅供个人学习使用; (2)、本科生学术水平有限,故不能保证全无科学性错误,本文仅作为该领域的学习参考。 一、课程总结 1、机器学习(Machine Learning, ML&am…

【Docker】安装 Nacos容器并根据Nginx实现负载均衡

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《Docker实战》。🎯🎯 &…

Go使用记忆化搜索的套路【以20240121力扣每日一题为例】

题目 分析 这道题很明显记忆化搜索,用py很容易写出来 Python class Solution:def splitArray(self, nums: List[int], k: int) -> int:n len(nums)# 寻找分割子数组中和的最小的最大值s [0]for num in nums:s.append(s[-1] num)#print(s)cachedef dfs(cur,…

跟着pink老师前端入门教程-day07

去掉li前面的项目符号(小圆点) 语法:list-style: none; 十五、圆角边框 在CSS3中,新增了圆角边框样式,这样盒子就可以变成圆角 border-radius属性用于设置元素的外边框圆角 语法:border-radius:length…

1.11马原

同一性是事物存在和发展的前提,一方的发展以另一方的发展为条件 同一性使矛盾双方相互吸收有利于自身的因素,在相互作用中各自得到发展 是事物发展根本规律,唯物辩证法的实质和核心 揭示了事物普遍联系的根本内容和变化发展的内在动力 是贯…

Vue3 在 history 模式下通过 vite 打包部署白屏

Vue3 在 history 模式下通过 vite 打包部署后白屏; 起因 hash 模式 url 后面跟个 # 强迫症犯了改成了 history,就此一波拉锯战开始了 ... 期间 nigix 和 router 各种反复排查尝试最终一波三折后可算是成功了 ... Vue官方文档 具体配置可供参考如下: 先简要介绍下,当前项目打包…

SpringBoot整合Dubbo和Zookeeper分布式服务框架使用的入门项目实例

文章目录 SpringBoot整合Dubbo和Zookeeper分布式服务框架使用的入门项目实例Dubbo定义其核心部分包含: 工作原理为什么要用dubbo各个节点角色说明:调用关系说明: dubbo为什么需要和zookeeper结合使用,zookeeper在dubbo体系中起到什么作用&…

0基础开发EtherNet/IP:协议格式,JAVA、C#、C++处理

经过一阵倒腾,把CIP、Ethernet/ip协议搞到手 协议的概念和理论就不提及了,上网随便一搜索EtherNet/IP遍地都是。 直接将协议关键点列举出来吧。 更多协议资料 www.jngbus.com 通讯软件群 30806722 这里讲解的是TCP和UDP协议的格式,EtherN…

【标准IO】fseek函数、ftell函数、fflush函数、getline函数

目录 fseekftellrewindfflushgetline 橙色 当你在文件中写入了10个字符后,又想把这10个字符读出来,该怎么做呢?因为有文件操作符指针的存在,此时该指针已经指在了这10个字符末尾,所以需要把该指针重定向,这…

RT-Thread Studio学习(十七)虚拟串口

RT-Thread Studio学习(十七)虚拟串口 一、简介二、新建RT-Thread项目并使用外部时钟三、启用USB设备功能四、测试 一、简介 本文将基于STM32F407VET芯片介绍如何在RT-Thread Studio开发环境下实现USB虚拟串口。 硬件及开发环境如下: OS WI…