【C++干货铺】C++11新特性——lambda表达式 | 包装器

news2024/10/6 14:28:31

=========================================================================

个人主页点击直达:小白不是程序媛

C++系列专栏:C++干货铺

代码仓库:Gitee

=========================================================================

目录

C++98中的排序

lambda表达式

lambda表达式语法

表达式中的各部分说明

lambda表达式的使用

基本的使用

[var]值传递捕捉变量var 

​编辑 [&var]引用传递捕捉变量var | [&]引用传递捕获所有变量

[this]值传递捕获当前的this指针 | [=]值传递捕获所有变量

包装器

bind


C++98中的排序

在C++98中,如果我们想要对一个集合中的数据元素进行排序时,可以使用库中的std::sort方法。

int main()
{
	int arr[10] = { 9,4,2,3,5,6,7,8,1,0 };
	//默认排序是升序
	sort(arr, arr + sizeof(arr) / sizeof(arr[0]));
	// 如果需要降序,需要改变元素的比较规则
	std::sort(arr, arr + sizeof(arr) / sizeof(arr[0]), greater<int>());
	return 0;
}

但是排序的元素是自定义类型呢?需要用户自己定义排序时候的比较规则;

但是对于一个自定义类型来说比较的逻辑可能有很多种;每要使用一个逻辑比较,就要实现一个algorithm算法,重新写一个类,这就意味着要实现很多类;特别是有些相容类的命名,这很令人头疼,因此在C++11的语法中出现了lambda表达式。


lambda表达式

lambda表达式语法

书写格式:[ capture-list ]( parameters )mutable -> return-type { statement }

表达式中的各部分说明

  • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可 省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
  • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

注意:

在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为
空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。


lambda表达式的使用

在使用lambda表达式之前我们还要对捕获列表进行说明

捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

  • [var]:表示值传递方式捕捉变量var
  • [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
  • [&var]:表示引用传递捕捉变量var
  • [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
  • [this]:表示值传递方式捕捉当前的this指针

注意:

a. 父作用域指包含lambda函数的语句块
b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
          比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量
                     [&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量
c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。
        比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复

d. 在块作用域以外的lambda函数捕捉列表必须为空。

e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者
非局部变量都会导致编译报错。

f. lambda表达式之间不能相互赋值,即使看起来类型相同

基本的使用

int main()
{
	//最简单的lambda表达式
	//该表达式没有任何意义
	[] {};
	// 省略参数列表和返回值类型,返回值类型由编译器推导为int
	int a = 3, b = 4;
	[=] {return a + 3; };
	// 省略了返回值类型,无返回值类型
	auto fun1 = [&](int c) {b = a + c; };
	fun1(10);
	cout << a << " " << b << endl;
	//各部分都很完善的lambda表达式。
	auto f1 = [&](int x, int y)->int {cout << x + y << endl; return 0; };
	f1(a,b);
	//
	cout << typeid(f1).name() << endl;
	return 0;
}

[var]值传递捕捉变量var 

int main()
{
	int x = 1, y = -1;

	//表示值传递方式捕捉变量var
	//捕捉的值可以使用但是不可以修改,要想修改的话需要加上mutable
	//修改的也只在lambda表达式作用域内有效
	cout << &x << endl << &y << endl;
	cout << x << " " << y << endl;
	auto f2 = [x, y]() mutable {
		cout << &x << endl << &y << endl;
		int tmp = x;
		x = y;
		y = tmp;
		cout << x << " " << y << endl;
	};
	f2();
	cout << x << " " << y << endl;
	return 0;
}

 [&var]引用传递捕捉变量var | [&]引用传递捕获所有变量

int main()
{
	//表示引用传递捕捉变量var
	int x = 1, y = -1;
	cout << x << " " << y << endl;
	cout << &x << endl << &y << endl;
	auto f1 = [&x, &y]() {
		cout << &x << endl << &y << endl;
		int tmp = x;
		x = y;
		y = tmp;
	};
	f1();
	cout << x << " " << y << endl;
	//引用传递捕捉所有父作用域中的变量
	auto f2 = [&]()
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	f2();
	cout << x << " " << y << endl;
	return 0;
}

 

[this]值传递捕获当前的this指针 | [=]值传递捕获所有变量

class Test
{
public:
	void Func()
	{
		auto f1 = [this]() {
			cout << a << endl << b << endl;
		};
		f1();
		auto f2 = [=]()
		{
			cout << a << endl << b << endl;
		};
		f2();
	}
public:
	int a = 1;
	int b = -1;
};
int main()
{
	Test t;
	t.Func();
	return 0;
}

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调
用,如果想要直接调用,可借助auto将其赋值给一个变量。


包装器

std::function 类模板函数是一个通用的可调用对象的包装器,它用简单的、统一的方式处理可调用对象。使用包装器之前需要包含头文件:#include<functional>

#include<functional>
int Print1(int x ,int y)
{
	cout << "这是一个普通函数调用" << endl;
	return x + y;
}
class Print2
{
public:
	double operator()(double x, double y)
	{
		cout << "这是一个仿函数调用" << endl;
		return x + y;
	}
};
class Printf
{
public:
	static int Print3(char x , char y)
	{
		cout << "这是类内的一个静态函数调用" << endl;
		return x - y;
	}
	void Print4()
	{
		cout << "这个类内的一个普通函数调用" << endl;
	}
};
int main()
{
	//普通函数包装
	function<int(int, int)> p1 = Print1;
	p1(1, -1);


	//lambda表达式包装
	function<int(int, int)> L = [](int x, int y) {
		return x + y;
	};
	L(1, 1);


	//仿函数包装
	
	//匿名对象包装
	function<double(double, double)> p2 = Print2();
	p2(1.0, -1.0);
	//创建对象包装
	Print2 P;
	function<double(double, double)> p3 = P;
	p3(1.0, 1.0);
	
	//类内静态函数包装
	//类内的静态函数是没有this指针的
	//可以写 & 也可以不写&
	function<int(char, char)> p4 = Printf::Print3;
	p4('a', 'a');
	function<int(char, char)> p44 = &Printf::Print3;
	p44('b', 'b');
	//类内非静态函数包装
	//类内的非静态函数是含有this指针的
	//因此包装时候函数参数是要有能代表this指针的东西 类指针,类名
	function<void(Printf*)> p5 = &Printf::Print4;
	//使用时也必须创建一个新对象使用。
	Printf Pf;
	p5(&Pf);
	function<void(Printf)> p6 = &Printf::Print4;
	p6(Printf());
	return 0;
}

bind

std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可
调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而
言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M
可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺
序调整等操作。

int Sub(int x, int y)
{
	return x - y;
}
int main()
{
	cout << Sub(10, 5) << endl;
	//调整参数顺序
	function<int(int, int)> S = bind(Sub, placeholders::_2, placeholders::_1);
	cout << S(10, 5) << endl;
	//调整参数顺序,有些参数可以bind时写死
	function<int(int)> S1 = bind(Sub, 10,placeholders::_1);
	cout << S1(5) << endl;
	return 0;
}

今天给大家分享介绍了C++中常用特性包括lambda表达式、包装器、bind。如果觉得文章还不错的话,可以三连支持一下,个人主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是我前进的动力! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400250.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI教我学编程之C#类的实例化与访问修饰符

前言 在这篇文章中&#xff0c;我将带大家深入了解C#编程语言的核心概念&#xff0c;包括类的实例化、访问修饰符的应用&#xff0c;以及C#中不同数据类型的默认值。我会通过逐步分析和具体实例&#xff0c;详细解释如何在C#中正确创建和操作对象&#xff0c;并探讨如何通过访…

【实操】基于 GitHub Pages + Hexo 搭建个人博客

《开发工具系列》 【实操】基于 GitHub Pages Hexo 搭建个人博客 一、引言二、接入 Node.js2.1 下载并安装 Node.js2.2 环境变量配置 三、接入 Git3.1 下载并安装 Git3.2 环境变量配置 四、接入 Hexo4.1 安装 Hexo4.2 建站4.3 本地启动服务器 五、接入 GitHub Pages5.1 初识 G…

C#调用C动态链接库

前言 已经没写过博客好久了&#xff0c;上一篇还是1年半前写的LTE Gold序列学习笔记&#xff0c;因为工作是做通信协议的&#xff0c;然后因为大学时没好好学习专业课&#xff0c;现在理论还不扎实&#xff0c;不敢瞎写&#xff1b; 因为工作原因&#xff0c;经常需要分析一些字…

在k8s上部署ClickHouse

概述 clickhouse的容器化部署&#xff0c;已经有非常成熟的生态了。在一些互联网大厂也已经得到了大规模的应用。 clickhouse作为一款数据库&#xff0c;其容器化的主要难点在于它是有状态的服务&#xff0c;因此&#xff0c;我们需要配置PVC。 目前业界比较流行的部署方式有…

实时云渲染服务:流式传输 VR 和 AR 内容

想象一下无需专用的物理计算机&#xff0c;甚至无需实物连接&#xff0c;就能获得高质量的 AR/VR 体验是种什么样的体验&#xff1f; 过去&#xff0c;与 VR 交互需要专用的高端工作站&#xff0c;并且根据头显、壁挂式传感器和专用的物理空间。VR 中的复杂任务会突破传感器范…

AI相关资料

文心一格收费,有免费额度 通义万相_AI创意作画_AI绘画_人工智能-阿里云 AI AIchatOS 即时 AI - 生成式图像创作及 UI 设计工具 Framer — The internet is your canvas

分布式锁的产生以及使用

日常开发中&#xff0c;针对一些需要锁定资源的操作&#xff0c;例如商城的订单超卖问题、订单重复提交问题等。 都是为了解决在资源有限的情况限制客户端的访问&#xff0c;对应的是限流。 单节点锁问题 目前针对这种锁资源的情况采取的往往是互斥锁&#xff0c;例如 java 里…

Java SE入门及基础(25)

目录 方法带参&#xff08;续第24篇&#xff09; 6.方法参数传递规则 方法传参来自官方的说明 基本数据类型传值案例 基本数据类型传值时传递的是值的拷贝 引用数据类型传值案例 引用数据类型传值时传递的是对象在堆内存上的空间地址 Java SE文章参考:Java SE入门及基础知…

[AutoSar]BSW_OS 08 Autosar OS_内存保护

一、 目录 一、关键词平台说明一、内存保护的概念 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 项目ValueOSautosar OSautosar厂商vector &#xff0c;芯片厂商TI 英飞凌编程语言C&#xff0c;C编译器HighTec (GCC) >>>>>回到总目录<<<<&l…

Python seaborn库的安装与图像的背景风格(Seaborn篇-01)

Python seaborn库的安装与图像的背景风格(Seaborn篇-01)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ�…

深度学习记录--指数加权平均

指数加权移动平均(exponentially weighted moving averages) 如何对杂乱的数据进行拟合&#xff1f; 通过指数加权平均可以把数据图近似拟合成一条曲线 公式&#xff1a; 其中表示第t个平均数&#xff0c;表示第t-1个平均数&#xff0c;表示第t个数据&#xff0c;表示变化参数…

从0到1实战微服务架构之Nacos服务注册、发现与管理

目录 一、前言 二、服务注册 三、服务管理 一、前言 Nacos是一个开源的、易于构建云原生应用的动态服务发现、配置管理和服务管理平台。从0到1实战微服务架构之Nacos下载安装 介绍了Nacos的架构、下载安装&#xff0c;本文将介绍服务发现、配置和管理。 二、服务注册 第一…

山西电力市场日前价格预测【2024-01-22】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2024-01-22&#xff09;山西电力市场全天平均日前电价为370.74元/MWh。其中&#xff0c;最高日前电价为601.28元/MWh&#xff0c;预计出现在18:15。最低日前电价为242.97元/MWh&#xff0c;预计…

UE 可靠UDP实现原理

发送 我们的消息发送都是通过 UChannel 来处理的&#xff0c;通过调用 UChannel::SendBunch 统一处理。 发送的 Bunch 是以 FOutBunch 的形式存在的。当 bReliable 为 True 的时候&#xff0c;表示 Bunch 是可靠的。 发送逻辑直接从UChannel::SendBunch处开始分析 1、大小限…

消息中间件之RocketMQ(一)

1.简介 RocketMQ是阿里巴巴于2012年开源的分布式消息中间件&#xff0c;后来捐赠给Apache软件基金会&#xff0c;并于2017年9月25日称为Apache的顶级项目.作为经历多过多次阿里巴巴双11这种超级工程的洗礼并有稳定出色表现得国产中间件&#xff0c;以其高性能、低延迟和高可靠…

NTFS 磁盘管理器---NTFS Disk by Omi NTFS中文

NTFS Disk by Omi NTFS是一款专为Mac用户设计的NTFS磁盘管理工具。它可以帮助用户方便地访问和管理NTFS格式的硬盘、U盘、移动硬盘以及其他存储设备&#xff0c;并提供高效稳定的NTFS卷管理功能。该软件具有简单的用户界面&#xff0c;使用户能够快速访问和管理NTFS磁盘上的文件…

C++入门学习(七)整型

整型就是整数类型的数据&#xff08;-1&#xff0c;0&#xff0c;1等等&#xff09; 数据类型占用空间取值范围short(短整型)2字节 (-2^15 ~ 2^15-1) 32768~32767 int(整型)4字节(-2^31 ~ 2^31-1)long(长整形) Windows为4字节, Linux为4字节(32位), 8字节(64位) (-2^31 ~ 2^31…

pyspark笔记:over

1 方法介绍 在 PySpark 中&#xff0c;over 函数是一个非常重要的概念&#xff0c;尤其是在使用窗口函数&#xff08;例如 row_number, rank, dense_rank, lead, lag 等&#xff09;时。over 函数允许你对一个数据集进行分组&#xff0c;然后在每个分组内应用窗口函数。 1.1 …

【MongoDB】下载安装、指令操作

目录 1.下载安装 2.指令 2.1.基础操作指令 2.2.增加 2.3.查询 2.4.修改 2.5.删除 前言&#xff1a; 关于MongoDB的核心概念请移步&#xff1a; 【文档数据库】ES和MongoDB的对比-CSDN博客 1.下载安装 本文以安装Windows版本的mongodb为例&#xff0c;Linux版本的其实…

漫漫数学之旅009

文章目录 经典格言数学习题古今评注拓展学习&#xff08;一&#xff09;大数定理&#xff08;二&#xff09;伯努利级数 经典格言 真正的问题&#xff0c;不在于机器是否思考&#xff0c;而在于人们是否思考。——BF斯金纳&#xff08;B. F. Skinner&#xff09; BF斯金纳&…