FPGA高端项目:Xilinx Artix7 系列FPGA纯verilog图像缩放工程解决方案 提供4套工程源码和技术支持

news2024/11/15 4:10:27

目录

  • 1、前言
    • 版本更新说明
    • 给读者的一封信
    • FPGA就业高端项目培训计划
    • 免责声明
  • 2、相关方案推荐
    • 我这里已有的FPGA图像缩放方案
    • 本方案在Xilinx Kintex7 系列FPGA上的应用
    • 本方案在国产FPGA紫光同创系列上的应用
    • 本方案在国产FPGA高云系列上的应用
  • 3、设计思路框架
    • 设计框图
    • 视频源选择
    • ov5640 i2c配置及采集
    • ADV7611 i2c配置及采集
    • 动态彩条
    • 图像缩放模块详解
    • 图像缩放模块使用
    • 图像缓存
    • 视频输出
    • 工程源码架构
  • 4、vivado和matlab联合仿真
  • 5、工程代码1详解:掌握图像缩放模块用法
  • 6、工程代码2详解:掌握图像缩小操作
  • 7、工程代码3详解:掌握图像放大操作
  • 8、工程代码4详解:掌握高分辨率图像缩小操作
  • 9、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 10、上板调试验证并演示
    • 静态演示
    • 动态演示
  • 11、福利:工程源码获取

FPGA高端项目:Xilinx Artix7 系列FPGA纯verilog图像缩放工程解决方案 提供4套工程源码和技术支持

1、前言

没玩过图像缩放都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。目前市面上主流的FPGA图像缩放方案如下:
1:Xilinx的HLS方案,该方案简单,易于实现,但只能用于Xilinx自家的FPGA;关于HLS实现图像缩放请,参考我之前写的文章HLS实现图像缩放点击查看:HLS图像缩放
2:非纯Verilog方案,大部分代码使用Verilog实现,但中间的fifo或ram等使用了IP,导致移植性变差,难以在Xilinx、Altera和国产FPGA之间自由移植;
3:纯Verilog方案,也就是本方案,一个字:牛逼!!!

本文使用Xilinx的Artix7系列FPGA纯verilog代码实现图像缩放,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组或者HDMI输入;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用ov5640作为视频源;图像缩放模块支持领域插值和双线性插值2种算法,通过模块顶层参数选择,默认使用双线性插值;缩放后的图像使用我常用的FDMA图像缓存架构进出DDR3等存储设备进行图像的三帧缓存,缩放后的视频最好进行缓存操作,因为缩放后原本的视频时序已经被打乱,不缓存的话直接读出基本是错误且不对齐的数据,输出的图像是乱码;从DDR3读出视频经过VGA时序生成标准的VGA时序视频,最后用纯verilog显示的HDMI输出模块送显示器显示即可;针对目前市面上主流的FPGA,本纯verilog图像缩放方案一共移植了17套工程源码,本博文介绍其中基于Xilinx Artix7 系列FPGA的4套工程,详情如下:
在这里插入图片描述
这里说明一下提供的4套工程源码的作用和价值,如下:

工程源码1:图像不缩放操作
ov5640或者动态彩条输入,HDMI输出,图像经过图像缩放模块,但并不做缩放操作,即图像进入图像缩放模块前的分辨率为1280x720,图像经过图像缩放模块出来后的分辨率依然为1280x720,目的是让读者知道图像缩放模块的用法,为后面的缩小和放大等操作打好基础;

工程源码2:图像缩小操作
ov5640或者动态彩条输入,HDMI输出,图像经过图像缩放模块,并进行缩小操作,即图像进入图像缩放模块前的分辨率为1280x720,图像经过图像缩放模块出来后的分辨率为800x600,目的是让读者知道图像缩放模块缩小操作的用法,以便能够移植和设计自己的项目;

工程源码3:图像放大操作
ov5640或者动态彩条输入,HDMI输出,图像经过图像缩放模块,并进行放大操作,即图像进入图像缩放模块前的分辨率为1280x720,图像经过图像缩放模块出来后的分辨率为1920x1080,目的是让读者知道图像缩放模块放大操作的用法,以便能够移植和设计自己的项目;

工程源码4:高分辨率图像缩小操作
HDMI或者动态彩条输入,HDMI输出,图像经过图像缩放模块,并进行缩小操作,即图像进入图像缩放模块前的分辨率为1920x1080,注意,这里是高分辨率进入,图像经过图像缩放模块出来后的分辨率为1280x720,目的是让读者知道高分辨率下图像缩放模块缩小操作的用法,以便能够移植和设计自己的项目;

本博客详细描述了FPGA高端项目:Xilinx Artix7 系列的纯verilog图像缩放工程解决方案的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

版本更新说明

此版本为第3版,之前根据读者的建议,对第1版工程做了改进和更新形成如下的第2版:
1:增加了输入视频动态彩条的选择,有的读者说他手里没有OV5640摄像头或者摄像头原理图和我的不一致,导致在移植过程中困难很大,基于此,增加了动态彩条,它由FPGA内部产生,不需要外接摄像头就可以使用,使用方法在后文有说明;
2:优化了FDMA,之前的FDMA内AXI4的数据读写突发长度为256,导致在低端FPGA上带宽不够,从而图像质量不佳,基于此,将FDMA内AXI4的数据读写突发长度改为128;
3:优化了HDMI输出模块,之前用的自定义IP,有读者说IP无法更新,虽能正常使用,但看源码不方便,基于此,将HDMI输出模块改为纯verilog实现的,直接了当;
4:更新了输出时序模块,我的输出时序模块采用1080P背景中显示有效区域图像的方式,之前的版本,除有效区域图像外,其他区域是花屏的,有读者说看着不舒服,基于此,将,除有效区域图像外的图像优化为黑色,即黑色背景中显示有效区域图像的方式,在第9章节有贴图;

现在根据读者的建议,又对第2版工程做了改进和更新形成如下的第3版:
1:优化了图像缩放模块代码结构,将原来的跨时钟域FIFO纳入图像缩放模块内部,并添加了新的顶层接口和配置参数,使能原来复杂的顶层接口和参数变得十分简洁;
2:新增了纯verilog实现的异步FIFO,代码里可选Xilinx的FIFO IP核,也可选verilog实现的异步FIFO,通过顶层参数选择,这样就使得图像缩放模块移植性和通用性更强;
3:新增了一套工程源码,该工程主要针对高分辨率输入视频的图像缩放的项目需求,新增的工程采用高达1920x1080@60Hz的HDMI输入视频进行图像缩放操作;
4:工程整体使用难度大大降低,由于优化了图像缩放模块和整体代码架构,加之将原来很多参数进行了统一的设置,代码量和行数减少了近45%,仅需修改集合参数就能快速实现工程的移植和修改;

给读者的一封信

FPGA作为当今热门行业,入行门槛很高,工资待遇不错,一时间引无数英雄尽折腰,但很多初学者甚至工程师都还有很多误区,现给读者一封信如下:
1、矮要承认挨打站稳
要学FPGA,甚至吃这碗饭,每个人都是从零基础开始的,你对自己有自信,认为你行,就自学;你不自信,就找别人学;和古代拜师学艺是一回事儿;首先思维要符合逻辑;
2、基础问题需要自己解决
最基础的知识,比如:verilog语法、vivado工具使用、模电数电基础常识、电脑使用、计算机基本结构。。。这些基础知识在网上都是免费的,既有文字资料也有视频资料;这些基础知识你一定要具备,因为这是你能获得的性价比最高的东西了,首先它免费;其次它简单,只需要你花时间,不需要花脑子;最后它重要,这是你干FPGA的基础;
3、有了源码等于零
你可能认为,我有了源码就能做项目了,我可以肯定的告诉你,该醒醒了;原子弹的详细原理和原料配方甚至生产工艺流程在网上都是公开的,为啥全世界就那联合国几大流氓能造出来的?同样的,源码给你,你看得懂吗?你知道怎么用吗?看不懂不会用的源码,跟废物有什么区别?你需要的是源码+工程,最完美的是源码+工程+技术支持;有了源码,就有了可开发的底层架构,有了工程就知道源码或者模块怎么使用,有了技术支持就可以根据源码修改开发自己的项目;
4、先学会爬在学会跑
对于初学者,没有资格研究代码,你首先需要做的是对工程进行复现;比如给你一个图像的工程,你首先在自己的开发板上复现这个工程的功能,然后再去阅读理解代码,然后对代码的功能部分做小幅修改,比如改一下接口,增加几个输出接口,比如加一个LED输出;小幅修改后再慢慢增加修改幅度,以符合自己的需求;
5、学FPGA要不求甚解
学FPGA要不求甚解,甚至不需要理解,这句话咋听着有点不符合逻辑呢?对于很多功能性模块而言,你不需要理解它怎么实现的,你只需要知道怎么使用它,比如一个图像缩放模块,这种东西都是很老的知识,以你目前的知识水平,该模块的代码你怎么看也看不懂的,但你只要知道怎么使用它就行了,知道怎么使用,就能做项目,就能在公司呆下去了,原因很简单,老板招你来是干活儿的,不是招你来学习的,那是学校的事儿;如果要等什么都懂了才干活儿,那公司早垮了,学FPGA就是在实践中学习,先上前线去干活,边干边学,在实践中遇到问题,并主动去查资料问大佬理解问题,才是成长最快的,而不是一味的咬文嚼字刨根问底;

FPGA就业高端项目培训计划

鉴于目前的FPGA就业和行业现状,本博推出了FPGA就业高端项目培训:纯verilog图像缩放 工程解决方案的计划,该计划旨在让一部分人先学会FPGA纯verilog图像缩放,提高从业者的技术水平和工资待遇,详细计划如下:
在这里插入图片描述
FPGA就业高端项目培训计划细节:
1、我发你上述17套工程源码和对应的工程设计文档网盘链接,你保存下载,作为培训的核心资料;
2、你根据自己的实际情况安装好对应的开发环境,然后对着设计文档进行浅层次的学习;
3、遇到不懂的随时问我,包括代码、职业规划、就业咨询、人生规划、战略规划等等;
4、每周末进行一次腾讯会议,我会检查你的学习情况和面对面沟通交流;
5、你可以移植代码到你自己的FPGA开发板上跑,如果你没有板子,你根据你自己的需求修改代码后,编译工程,把bit发我,我帮你下载到我的板子上验证;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我这里已有的FPGA图像缩放方案

我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往

本方案在Xilinx Kintex7 系列FPGA上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Artix7 系列FPGA上的应用,想要直接应用于Xilinx Kintex7 系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在国产FPGA紫光同创系列上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Artix7 系列FPGA上的应用,想要直接应用于国产FPGA紫光同创系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在国产FPGA高云系列上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Artix7 系列FPGA上的应用,想要直接应用于国产FPGA高云系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

3、设计思路框架

设计框图

本博客提供4套vivado工程源码,设计框图如下:
在这里插入图片描述

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用ov5640作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_TEST时,输入源视频是ov5640摄像头;
当(不注释) define COLOR_TEST时,输入源视频是动态彩条;

ov5640 i2c配置及采集

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用ov5640作为视频源;ov5640需要i2c配置才能使用,需要i2c配置分辨率,然后将DVP接口的两个时钟一个像素的GRB565视频数据采集为一个时钟一个像素的RGB565或者RGB888视频数据;ov5640i2c配置及采集代码如下:
在这里插入图片描述
ov5640配置和采集模块顶层参数如下:

module helai_ov5640_rx #(
	parameter DELAY        = 1    ,	// 有的摄像头使用转接板与FPGA开发板连接,可能需要考虑上电延时,不需要是设为0
	parameter DEVID        = 8'h78, // i2c 从机器件地址
	parameter IMAGE_WIDTH  = 1280 ,	// ov5640输出视频宽度
	parameter IMAGE_HEIGHT = 720  ,	// ov5640输出视频高度
	parameter RGB_TYPE     = 1'd0	// 设为0-->输出RGB565;设为1-->输出RGB888	
)(
	input         clk_25m     ,	// 固定输入 25M 时钟
	input         rst_n       ,	// 低电平复位
	output        cmos_scl    ,	// ov5640的scl接口
	inout         cmos_sda    ,	// ov5640的sda接口
	input         cmos_pclk_i ,	// ov5640的pclk接口
	input         cmos_href_i ,	// ov5640的href接口
	input         cmos_vsync_i,	// ov5640的vsync接口
	input  [7:0]  cmos_data_i ,	// ov5640的data接口
	output        cmos_xclk_o ,	// ov5640的xclk接口,如果你的摄像头自带晶振,则此信号不需要
    output [23:0] ov5640_rgb  ,	// 输出的RGB视频像素数据
    output        ov5640_de   ,	// 输出的RGB视频像素数据有效信号
    output        ov5640_vs   ,	// 输出的RGB视频场同步信号
    output        ov5640_hs   ,	// 输出的RGB视频行同步信号
	output        cfg_done      // ov5640配置完成拉高信号
);

ov5640配置和采集模块的例化请参考工程源码的顶层代码;

ADV7611 i2c配置及采集

工程4使用HDMI输入视频,采用ADV7611 作为HDMI解码芯片,ADV7611 需要i2c配置才能使用,需要i2c配置分辨率,然后将输入视频数据打两拍以同步数据;ADV7611 i2c配置及采集代码如下:
在这里插入图片描述
工程4的HDMI输入设备为笔记本电脑,将笔记本电脑分辨率设置为1920x1080@60Hz作为输入源,通过HDMI线连接到FPGA开发板的HDMI输入接口;

动态彩条

如果你的手里没有ov5640,或者你得开发板没有ov5640接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1280x720,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述
动态彩条模块的例化请参考工程源码的顶层代码;

图像缩放模块详解

图像缩放模块功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
在这里插入图片描述
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
在这里插入图片描述
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:

module helai_video_scale #(
	//---------------------------Parameters----------------------------------------
	parameter FIFO_TYPE          =	"xilinx",		// "xilinx" for xilinx-fifo ; "verilog" for verilog-fifo
	parameter DATA_WIDTH         =	8       ,		//Width of input/output data
	parameter CHANNELS           =	1       ,		//Number of channels of DATA_WIDTH, for color images
	parameter INPUT_X_RES_WIDTH  =	11      		//Widths of input/output resolution control signals	
)(
	input                            i_reset_n         ,    // 输入--低电平复位信号
	input  [INPUT_X_RES_WIDTH-1:0]   i_src_video_width ,	// 输入视频--即缩放前视频的宽度
	input  [INPUT_X_RES_WIDTH-1:0]   i_src_video_height,	// 输入视频--即缩放前视频的高度
	input  [INPUT_X_RES_WIDTH-1:0]   i_des_video_width ,	// 输出视频--即缩后前视频的宽度
	input  [INPUT_X_RES_WIDTH-1:0]   i_des_video_height,	// 输出视频--即缩后前视频的高度
	input                            i_src_video_pclk  ,	// 输入视频--即缩前视频的像素时钟
	input                            i_src_video_vs    ,	// 输入视频--即缩前视频的场同步信号,必须为高电平有效
	input                            i_src_video_de    ,	// 输入视频--即缩前视频的数据有效信号,必须为高电平有效
	input  [DATA_WIDTH*CHANNELS-1:0] i_src_video_pixel ,	// 输入视频--即缩前视频的像素数据
	input                            i_des_video_pclk  ,	// 输出视频--即缩后视频的像素时钟,一般为写入DDR缓存的时钟
	output                           o_des_video_vs    ,	// 输出视频--即缩后视频的场同步信号,高电平有效
	output                           o_des_video_de    ,	// 输出视频--即缩后视频的数据有效信号,高电平有效
	output [DATA_WIDTH*CHANNELS-1:0] o_des_video_pixel 		// 输出视频--即缩后视频的像素数据
);

FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;

2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

代码里的配置如下:
在这里插入图片描述

图像缩放模块使用

图像缩放模块使用非常简单,顶层代码里设置了四个参数,如下:
在这里插入图片描述
上图视频通过图像缩放模块但不进行缩放操作,旨在掌握图像缩放模块的用法;如果需要将图像放大到1080P,则修改为如下:
在这里插入图片描述
当然,需要修改的不仅仅这一个地方,FDMA的配置也需要相应修改,详情请参考代码,但我想要证明的是,图像缩放模块使用非常简单,你都不需要知道它内部具体怎么实现的,上手就能用;

图像缓存

Xilinx系列FPGA工程使用我常用的FDMA架构,紫光同创系列FPGA工程使用我常用的HDMA架构,高云系列FPGA工程使用自家带的IP架构;图像缓存的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
FDMA图像缓存架构在Block Design中如下:
在这里插入图片描述
需要注意的是,Xilinx系列的Artix7、Kintex7以及紫光和高云工程都使用DDR3作为缓存,Zynq7020工程使用PS端的DDR3作为缓存;Artix7、Kintex7工程调用MIG IP实现DDR3读写;Zynq7020工程调用Zynq软核实现DDR3读写;

视频输出

视频从FDMA读出后,经过VGA时序模块和HDMI发送模块后输出显示器,代码位置如下:
在这里插入图片描述
VGA时序配置为1920X1080,HDMI发送模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,关于这个模块,请参考我之前的博客,博客地址:点击直接前往

工程源码架构

Xilinx Kintex7系列FPGA工程源码架构具有高度相似性,以工程1为例截图如下:
在这里插入图片描述

4、vivado和matlab联合仿真

需要注意的是,方针的目的是为了验证,这一步我已经替你们做完了,所以读者不再需要单独仿真,如果读者是在需要自己仿真玩玩儿,需要自己写仿真代码;vivado和matlab联合仿真详细步骤如下:
第一步:网上下载一张1280X720的图片,并用matlab将图片转换为RGB格式的txt文档;
第二步:在vivado下设计tstbench,将RGB格式的txt文档作为视频输入源给到图像缩放模块,并将缩放后的图像数据写入输出txt文档;
第二步:用matlab将输出txt文档转换为图片,并于原图一并输出显示以做比较;
根据以上方法得到以下仿真结果:
双线性插值算法原图1280X720缩小到800x600如下:
在这里插入图片描述
邻域插值算法原图1280X720缩小到800x600如下:
在这里插入图片描述
双线性插值算法原图1280X720放大到1920x1080如下:
在这里插入图片描述
邻域插值算法原图1280X720放大到1920x1080如下:
在这里插入图片描述

5、工程代码1详解:掌握图像缩放模块用法

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720;
输出:HDMI,1080P分辨率下的720P有效区域显示;
输入输出缩放方案:输入1280x720–>输出1280x720;
工程作用:掌握图像缩放模块的用法,为后面的缩小和放大等操作打好基础;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:该工程使用的是纯verilog fifo方案;
在这里插入图片描述

6、工程代码2详解:掌握图像缩小操作

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720;
输出:HDMI,1080P分辨率下的800x600有效区域显示;
输入输出缩放方案:输入1280x720–>输出800x600;
工程作用:掌握图像缩放模块缩小操作的用法,以便能够移植和设计自己的项目;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:该工程使用的是纯verilog fifo方案;
在这里插入图片描述

7、工程代码3详解:掌握图像放大操作

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:OV5640摄像头或动态彩条,分辨率1280x720;
输出:HDMI,1080P分辨率下的1920x1080有效区域显示;
输入输出缩放方案:输入1280x720–>输出1920x1080;
工程作用:掌握图像缩放模块放大操作的用法,以便能够移植和设计自己的项目;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:该工程使用的是Xilinx fifo ip方案;
在这里插入图片描述

8、工程代码4详解:掌握高分辨率图像缩小操作

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:HDMI,分辨率1920x1080;ADV7611解码;
输出:HDMI,1080P分辨率下的1280x720有效区域显示;
输入输出缩放方案:输入1920x1080–>输出1280x720;
工程作用:掌握高分辨率图像的图像缩放模块缩小操作的用法,以便能够移植和设计自己的项目;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:该工程使用的是Xilinx fifo ip方案,因为输入分辨率很大;
在这里插入图片描述

9、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

10、上板调试验证并演示

静态演示

工程1:ov5640摄像头原图1280x720输出效果如下:
在这里插入图片描述
工程1:动态彩条原图1280x720输出效果如下:
在这里插入图片描述
工程2:ov5640摄像头原图1280x720缩小到800x600输出效果如下:
在这里插入图片描述
工程2:动态彩条原图1280x720缩小到800x600输出效果如下:
在这里插入图片描述
工程3:ov5640摄像头原图1280x720放大到1920x1080输出效果如下:
在这里插入图片描述
工程3:动态彩条原图1280x720放大到1920x1080输出效果如下:
在这里插入图片描述

动态演示

动态视频演示如下:

纯verilog图像缩放-2023-16比9

11、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1398042.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue中引入sass、scss

常规步骤 1. 创建项目 使用vue cli 脚手架工具创建项目 vue create xxxx2. 创建全局样式文件 全局样式变量 路径:/assets/styles/variables.scss //flex 布局变量 $--flex-direction: ("row", "column"); $--flex-position: ("start"…

如何从命令行运行testng.xml?

目录 创建一个新的java项目并从命令行运行testng.xml 使用命令行运行XML文件 从命令行运行现有maven项目的XML文件 在这篇文章中,我们将使用命令行运行testng.xml。有多种场景需要使用命令行工具运行testng.xml。也许您已经创建了一个maven项目,现在想…

2024执业医师考试报名流程及上传照片要求详解

2024年执业医师和助理医师考试的报名工作将于1月22日正式启动,报名截止日期为2月4日。建议考生尽早报名,以避免在报名截止日期临近时出现拥挤情况。您可根据本文介绍,提前准备好报名所需资料、证件照电子版和相关证明材料,并了解报…

【算法】使用优先级队列(堆)解决算法题(TopK等)(C++)

文章目录 1. 前言2. 算法题1046.最后一块石头的重量703.数据流中的第K大元素 2.5 如何选择大根堆 与 小根堆? 为什么选择大根堆(小根堆)?692.前K个高频单词295.数据流的中位数 1. 前言 我们知道:优先级队列是一种常用…

C# .NET读取Excel文件并将数据导出到DataTable、数据库及文本

Excel文件是存储表格数据的普遍格式,因此能够高效地读取和提取信息对于我们来说至关重要。C#语言借助.NET Framework和各种库的广泛功能,能够进行高效的数据操作。利用C#读取Excel文件并将数据写入数据库和DataTable,或者将数据用于其他目的&…

Rust基础语法1

所有权转移,Rust中没有垃圾收集器,使用所有权规则确保内存安全,所有权规则如下: 1、每个值在Rust中都有一个被称为其所有者(owner)的变量,值在任何时候只能有一个所有者。 2、当所有者离开作用域…

一文读懂「Fine-tuning」微调

一、什么是微调? 1. 什么是微调? 微调是指在预训练模型(Pre-trained model)的基础上,针对特定任务或数据领域,对部分或全部模型参数进行进一步的训练和调整(Fine Tune)。预训练模型…

03 MyBatisPlus之条件构造器Wrapper+三个核心注解

2. 条件构造器 2.1 条件构造器作用 //创建一个查询条件构造器对象,所有条件都放进去 QueryWrapper<User> queryWrapper new QueryWrapper<>(); queryWrapper.eq("name", "John"); // eq添加等于条件 queryWrapper.ne("age", 30);…

伊恩·斯图尔特《改变世界的17个方程》波动方程笔记

主要是课堂的补充&#xff08;yysy&#xff0c;我觉得课堂的教育模式真有够无聊的&#xff0c;PPT、写作业、考试&#xff0c;感受不到知识的魅力。 它告诉我们什么&#xff1f; 小提琴琴弦上某个小段的加速度&#xff0c;与相邻段相对于该段的平均位移成正比。 为什么重要&…

初阶数据结构:顺序表

目录 1. 引子&#xff1a;线性表2. 简单数据结构&#xff1a;顺序表2.1 顺序表简介与功能模块分析2.2 顺序表的实现2.2.1 顺序表&#xff1a;存储数据结构的构建2.2.2 顺序表&#xff1a;初始化与空间清理&#xff08;动态&#xff09;2.2.3 顺序表&#xff1a;插入与删除数据2…

总结网络中的一些基本概念

1. IP地址 描述一个设备在网络上的位置&#xff0c;而且计算机是通过数字来描述IP地址的。例如&#xff08;生活中的地址&#xff09; 2. 端口号 描述一个主机上的哪个应用程序&#xff0c;有了IP可以确定主机&#xff0c;但是一个主机上可能有很多程序在使用网络&#xff0c;…

基于SpringBoot Vue自习室管理系统

大家好✌&#xff01;我是Dwzun。很高兴你能来阅读我&#xff0c;我会陆续更新Java后端、前端、数据库、项目案例等相关知识点总结&#xff0c;还为大家分享优质的实战项目&#xff0c;本人在Java项目开发领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#x…

Elasticsearch各种高级文档操作3

本文来记录几种Elasticsearch的文档操作 文章目录 初始化文档数据聚合查询文档概述对某个字段取最大值 max 示例对某个字段取最小值 min 示例对某个字段求和 sum 示例对某个字段取平均值 avg 示例对某个字段的值进行去重之后再取总数 示例 本文小结 初始化文档数据 在进行各种文…

ASP.NET Core 对象池化技术

写在前面 Microsoft.Extensions.ObjectPool 是 ASP.NET Core 基础结构的一部分&#xff0c;当对象的初始化成本较高&#xff0c;并且可能被频繁使用时&#xff0c;才适合采用对象池技术&#xff1b;被ObjectPool管理的对象不会进入垃圾回收&#xff0c;使用时通过由实例对象实…

【迅搜19】扩展(二)TNTSearch和JiebaPHP方案

扩展&#xff08;二&#xff09;TNTSearch和JiebaPHP方案 搜索引擎系列的最后一篇了。既然是最后一篇&#xff0c;那么我们也轻松一点&#xff0c;直接来看一套非常有意思的纯 PHP 实现的搜索引擎及分词方案吧。这一套方案由两个组件组成&#xff0c;一个叫 TNTSearch &#xf…

【0到1的设计之路】从C语言到二进制程序

C程序如何从源代码生成指令序列(二进制可执行文件) 预处理 -> 编译 -> 汇编 -> 链接 -> 执行 预处理 预处理 文本粘贴 #include <stdio.h> #define MSG "Hello \ World!\n" int main() {printf(MSG /* "hi!\n" */); #ifdef __riscvpr…

PE解释器之PE文件结构(二)

接下来的内容是对IMAGE_OPTIONAL_HEADER32中的最后一个成员DataDirectory&#xff0c;虽然他只是一个结构体数组&#xff0c;每个结构体的大小也不过是个字节&#xff0c;但是它却是PE文件中最重要的成员。PE装载器通过查看它才能准确的找到某个函数或某个资源。 一&#xff1…

2种数控棋

目录 数控棋1 数控棋2 数控棋1 棋盘&#xff1a; 初始局面&#xff1a; 规则&#xff1a; 规则&#xff1a;双方轮流走棋&#xff0c;可走横格、竖格、可横竖转弯&#xff0c;不可走斜格。每一步均须按棋所在格的数字走步数&#xff0c;不可多不可少。 先无法走棋的一方为…

如何有效防爬虫?一文讲解反爬虫策略

企业拥抱数字化技术的过程中&#xff0c;网络犯罪分子的“战术”也更难以觉察&#xff0c;并且这些攻击越来越自动化和复杂&#xff0c;也更加难以觉察。在众多攻击手段中&#xff0c;网络爬虫是企业面临的主要安全挑战。恶意爬虫活动可能导致数据滥用、盗窃商业机密等问题&…

ctfshow php特性(web89-web101)

目录 web89 web90 web91 web92 web93 web94 web95 web96 web97 web98 web99 web100 web101 php特性(php基础知识) web89 <?php include("flag.php"); highlight_file(_FILE_);if(isset($_GET[num])){$num$_GET[num];if(preg_match("/[0-9]/&…