OpenCV-Python(47):支持向量机

news2024/10/2 7:37:42

原理

线性数据分割

        如下图所示,其中含有两类数据,红的和蓝的。如果是使用kNN算法,对于一个测试数据我们要测量它到每一个样本的距离,从而根据最近的邻居分类。测量所有的距离需要足够的时间,并且需要大量的内存存储训练样本。但是分类下图所示的数据真的需要占用这么多资源吗?

        我们在考虑另外一个想法。我们找到了一条直线f (x) = ax1 + bx2 + c,它可以将所有的数据分割到两个区域。当我们拿到一个测试数据X 时,我们只需要把它代入f (x)。如果|f (X) | > 0,它就属于蓝色组,否则就属于红色组。我们把这条线称为决定边界(Decision_Boundary)。很简单而且内存使用效率也很高。这种使用一条直线(或者是高位空间中的超平面)将平面上的数据分成两组的方法成为线性分割。 

        从上图中我们看到有很多条直线可以将数据分为蓝红两组,哪一条直线是最好的呢?直觉上上这两条直线应该是与两组数据的距离越远越好。为什么呢?因为测试数据可能有噪音影响(真实数据+ 噪声)。这些数据不应该影响分类的准确性。所以这条距离远的直线抗噪声能力也就最强。所以SVM 要做就是找到一条直线并使这条直线到(训练样本)各组数据的最短距离最大。下图
中加粗的直线经过中心。

        要找到决定边界,就需要使用训练数据。我们需要所有的训练数据吗?不是的,只需要那些靠近边界的数据,如上图中一个蓝色的圆盘和两个红色的方块。我们叫他们支持向量,经过他们的直线叫做支持平面。有了这些数据就可以找到决定边界了。

        实际上,我们还是会担心所有的数据,因为这对于数据简化有帮助。 到底发生了什么呢?首先我们找到了分别代表两组数据的超平面。例如,蓝色数据可以用ωT x+b0 > 1 表示,而红色数据可以用ωT x+b0 < −1 表示,ω 叫做权重向量,ω = [ω1, ω2, . . . , ω3],x 为特征向量x = [x1, x2, . . . ,xn],b0 被叫做bias(截距)。权重向量决定了决定边界的走向,而bias 点决定了它(决定边界)的位置。决定边界被定义为这两个超平面的中间线(平面),表达式为ωT x+b0 = 0。

非线性数据分割 

        想象一下,如果一组数据不能被一条直线分为两组怎么办?例如在一维空间中X 类包含的数据点有(-3,3),O 类包含的数据点有(-1,1)。很明显不可能使用线性分割将X 和O 分开。但是有一个方法可以帮我们解决这个问题。使用函数 对这组数据进行映射后得到的X 为9,O 为1,这时就可以使用线性分割了。

        或者我们也可以把一维数据转换成两维数据。我们可以使用函数对数据进行映射。这样X 就变成了(-3,9)和(3,9)而O 就变成了(-1,1)和(1,1)。同样可以线性分割,简单来说就是在低维空间不能线性分割的数据在高维空间很有可能可以线性分割。

        通常我们可以将d 维数据映射到D 维数据来检测是否可以线性分割(D>d)。这种想法可以帮助我们通过对低维输入(特征)空间的计算来获得高维空间的点积。我们可以用下面的例子说明。

        这说明三维空间中的内积可以通过计算二维空间中内积的平方来获得。这可以扩展到更高维的空间。所以根据低维的数据来计算算它们的高维特征。在进行完映射后,我们就得到了一个高维空间数据。 

        除了上面的这些概念之外,还有一个问题需要解决,那就是分类错误。仅仅找到具有最大边缘的决定边界是不够的。我们还需要考虑错误分类带来的误差。有时我们找到的决定边界的边缘可能不是最大的但是错误分类是最少的。所以我们需要对我们的模型进行修正来找到一个更好的决定边界:最大的边缘,最小的错误分类。评判标准就被修改为:

        下图显示这个概念。对于训练数据的每一个样本又增加了一个参数ξi。它表示训练样本到他们所属类(实际所属类)的超平面的距离。对于那些分类正确的样本个参数为0,因为它们会落在它们的支持平面上。 

        参数C 的取值应该如何选择呢?很明显应该取决于你的训练数据。虽然没有一个统一的答案,但是在选取C 的取值时我们还是应该考虑一下下面的规则:

  • 如果C 的取值比较大,错误分类会减少,但是边缘也会减小。其实就是错误分类的代价比较高,惩罚比较大。通常在数据噪声很小时我们可以选取较大的C 值。
  • 如果C 的取值比较小,边缘会比较大,但错误分类的数量会升高。其实就是错误分类的代价比较低,惩罚很小。整个优化过程就是为了找到一个具有最大边缘的超平面对数据进行分类。如果数据噪声比较大时,应该考虑这么做。

使用SVM 进行手写数据OCR 

        这里我们还是要进行手写数据的OCR,但这次我们使用的是SVM 而不是kNN。在kNN 中我们直接使用像素的灰度值作为特征向量。这次我们要使用方向梯度直方图(Histogram of Oriented Gradients) HOG作为特征向量。在计算HOG 前我们使用图片的二阶矩对其进行抗扭斜(deskew)处理。所以我们首先定义一个函数deskew(),它可以对一个图像进行抗扭斜处理。下面就是deskew() 函数:

def deskew(img):
    m = cv2.moments(img)
    if abs(m['mu02']) < 1e-2:
        return img.copy()
    skew = m['mu11']/m['mu02']
    M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
    img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
    return img

        下图显示了对含有数字0 的图片进行抗扭斜处理后的效果。左侧是原始图像,右侧是处理后的结果。 

        接下来我们要计算图像的HOG 描述符,创建一个函数hog()。为此我们创建算图像X 方向和Y 方向的Sobel 导数。然后计算得到每个像素的梯度的方向和大小。把这个梯度转换成16 位的整数。将图像分为4 个小的方块,对每一个小方块计算它们的朝向直方图(16 个bin),使用梯度的大小做权重。这样每一个小方块都会得到一个含有16 个成员的向量。4 个小方块的4 个向量就组成了这个图像的特征向量,包含64 个成员。这就是我们要训练练数据的特征向量。

def hog(img):
    gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
    gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
    mag, ang = cv2.cartToPolar(gx, gy)
    bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
    bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
    mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
    hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells,    mag_cells)]
    hist = np.hstack(hists) # hist is a 64 bit vector
    return hist

        最后,和前面一样,我们将大图分割成小图。使用每个数字的前250 个作为训练数据,后250 个作为测试数据。全部代码如下所示:

# -*- coding: utf-8 -*-

import cv2
import numpy as np

SZ=20
bin_n = 16 # Number of bins
svm_params = dict( kernel_type = cv2.SVM_LINEAR,svm_type = cv2.SVM_C_SVC,C=2.67, gamma=5.383 )
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR

def deskew(img):
    m = cv2.moments(img)
    if abs(m['mu02']) < 1e-2:
        return img.copy()
    skew = m['mu11']/m['mu02']
    M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
    img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
    return img
def hog(img):
    gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
    gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
    mag, ang = cv2.cartToPolar(gx, gy)
    bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
    bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
    mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
    hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells,             mag_cells)]
    hist = np.hstack(hists) # hist is a 64 bit vector
return hist

img = cv2.imread('digits.png',0)
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]

# First half is trainData, remaining is testData
train_cells = [ i[:50] for i in cells ]
test_cells = [ i[50:] for i in cells]

###### Now training ########################
deskewed = [map(deskew,row) for row in train_cells]
hogdata = [map(hog,row) for row in deskewed]
trainData = np.float32(hogdata).reshape(-1,64)
responses = np.float32(np.repeat(np.arange(10),250)[:,np.newaxis])
svm = cv2.SVM()
svm.train(trainData,responses, params=svm_params)
svm.save('svm_data.dat')

###### Now testing ########################
deskewed = [map(deskew,row) for row in test_cells]
hogdata = [map(hog,row) for row in deskewed]
testData = np.float32(hogdata).reshape(-1,bin_n*4)
result = svm.predict_all(testData)

####### Check Accuracy ########################
mask = result==responses
correct = np.count_nonzero(mask)
print (correct*100.0/result.size)

        准确率达到了94%。你可以尝试一下不同的参数值,看看能不能得到更高的准确率。或者也可以详细读一下这个领域的文章并用代码实现它。 

 


 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1395177.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作

详情点击链接&#xff1a;最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析&#xff0c;AI画图&#xff0c;图像识别&#xff0c;文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Clau…

给零基础朋友的编程课11 - 代码

给零基础朋友的编程课11 上 - 布尔值、判断式、while循环_哔哩哔哩_bilibili 给零基础朋友的编程课11 中 - 算术运算符、间隔与索引_哔哩哔哩_bilibili 给零基础朋友的编程课11 下 - 一点透视、比例、仿制品VI的讲解_哔哩哔哩_bilibili 源代码&#xff1a; // // 仿制品VI…

Java JVM 堆、栈、方法区详解

目录 1. 栈 2. 堆 3. 方法区 4. 本地方法栈 5. 程序计数器 首先来看一下JVM运行时数据区有哪些。 1. 栈 在介绍JVM栈之前&#xff0c;先了解一下 栈帧 概念。 栈帧&#xff1a;一个栈帧随着一个方法的调用开始而创建&#xff0c;这个方法调用完成而销毁。栈帧内存放者方…

MetaGPT-打卡-day2,MetaGPT框架组件学习

文章目录 Agent组件实现一个单动作的Agent实现一个多动作的Agent技术文档生成助手其他尝试 今天是第二天的打卡~昨天是关于一些概念的大杂烩&#xff0c;今天的话&#xff0c;就来到了Hello World环节。 从单个Agnet到多个Agent&#xff0c;再到组合更复杂的工作流来解决问题。…

Dubbo-admin监控中心

监控中心 Dubbo-admin监控中心执行操作启动provider和consumer项目进行测试总体流程 Dubbo-admin监控中心 dubbo-admin下载路径 git clone https://github.com/apache/dubbo-admin.git图1-1 dubbo-admin项目文件展示 执行操作 # 启动zookeeper# 前端 cd dubbo-admin-ui npm i…

[足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-5+6

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记 - Kalman Filter卡尔曼滤波器 Ch05-56 5. An Example 2D例子6. Extended Kalman Filter扩展卡尔曼滤波器&#xff08;EKF&#xff09; 5. An Example 2D例子 6. Extended Kalman Filter扩展卡尔曼…

#vue3 实现前端下载excel文件模板功能

一、需求&#xff1a; 前端无需通过后端接口&#xff0c;即可实现模板下载功能。 通过构造一个 JSON 对象&#xff0c;使用前端常用的第三方库 xlsx&#xff0c;可以直接将该 JSON 对象转换成 Excel 文件&#xff0c;让用户下载模板 二、效果&#xff1a; 三、源码如下&…

基于网络爬虫的微博热点分析,包括文本分析和主题分析

基于Python的网络爬虫的微博热点分析是一项技术上具有挑战性的任务。我们使用requests库来获取微博热点数据&#xff0c;并使用pandas对数据进行处理和分析。为了更好地理解微博热点话题&#xff0c;我们采用LDA主题分析方法&#xff0c;结合jieba分词工具将文本分割成有意义的…

如何发挥 Sketch在UI和UX设计中的作用

Sketch是一款专业的矢量图形设计软件&#xff0c;主要应用于UI设计、移动应用设计、Web设计等领域。假如你是一个交互设计师或UI设计师&#xff0c;那么你一定知道Sketch这一强大的矢量设计软件&#xff1b;如果你使用了Photoshop&#xff0c;那么在你接触到Sketch之后&#xf…

算法题-爬楼梯-不同思路解法

主要记录个人思考过程&#xff0c;不同方案实现思路的演变 题目 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;…

IT大侦“碳”:Concept Luna向循环设计持续演进

IT大侦“碳”&#xff1a;Concept Luna向循环设计持续演进

【Docker】Docker镜像结构及自定义镜像,镜像上传仓库使用

一、引言 Docker镜像是一个只读的Docker容器模板&#xff0c;含有启动Docker容器所需的文件系统结构及其内容&#xff0c;因此是启动一个Docker容器的基础。镜像的结构原理图大致分为四层&#xff1a;共享的内核层、基础镜像层、定制镜像层、可写容器层。 共享的内核层&#xf…

【漏洞攻击之文件上传条件竞争】

漏洞攻击之文件上传条件竞争 wzsc_文件上传漏洞现象与分析思路编写攻击脚本和重放措施中国蚁剑拿flag wzsc_文件上传 漏洞现象与分析 只有一个upload前端标签元素&#xff0c;并且上传任意文件都会跳转到upload.php页面&#xff0c;判定是一个apache容器&#xff0c;开始扫描…

龙年-微信定制红包封面,送一波

龙年新年马上就要来临了&#xff0c;我定制两款红包封面&#xff0c;送给大家。这次是借助AI的能力&#xff0c;自己独立完成&#xff0c;这大概就是这波AI浪潮的魅力&#xff0c;人人皆可参与。 另外&#xff0c;微信平台也给我推送了自己的公众号创作回顾&#xff0c;没想到居…

Failed at the node sass@4.14.1 postinstall script.

首先&#xff0c;查看node和 npm版本 #用于列出已安装的 Node.js 版本。 nvm ls #切换node版本 nvm use 12.17.0 #换国内镜像源&#xff1a;&#xff08;单独设置sass的安装源。&#xff09; npm config set sass_binary_sitehttps://npm.taobao.org/mirrors/node-sass …

小白数学建模 Mathtype 7.7傻瓜式下载安装嵌入Word/WPS以及深度使用教程

数学建模Mathtype的下载安装嵌入Word/WPS以及深度使用教程 一 Mathtype 的下载安装1.1 安装前须知1.2 下载压缩包1.3 安装注册 二 嵌入Word/WPS2.1 嵌入Word2.1.1 加载项嵌入 Word2.1.2 宏录制嵌入 Word 2.2 嵌入 WPS2.2.1 加载项嵌入 WPS2.2.2 宏录制嵌入 WPS 2.3 嵌入时报错解…

AWS 专题学习 P5 (Classic SA、S3)

文章目录 Classic Solutions Architecture无状态 Web 应用程序&#xff1a;WhatIsTheTime.com背景 & 目标架构演进Well-Architected 5 pillars 有状态的 Web 应用程序&#xff1a;MyClothes.com背景 & 目标架构演进总结 有状态的 Web 应用程序&#xff1a;MyWordPress.…

经典数据库练习题及答案

数据表介绍 --1.学生表 Student(SId,Sname,Sage,Ssex) --SId 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course(CId,Cname,TId) --CId 课程编号,Cname 课程名称,TId 教师编号 --3.教师表 Teacher(TId,Tname) --TId 教师编号,Tname 教师姓名 --4.成绩…

【EI会议征稿通知】第七届先进电子材料、计算机与软件工程国际学术会议(AEMCSE 2024)

第七届先进电子材料、计算机与软件工程国际学术会议(AEMCSE 2024&#xff09; 2024 7th International Conference on Advanced Electronic Materials, Computers and Software Engineering 第七届先进电子材料、计算机与软件工程国际学术会议(AEMCSE 2024)将于2024年5月10-1…

Ubuntu18.04在线镜像仓库配置

在线镜像仓库 1、查操作系统版本 rootubuntu:~# lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 18.04.5 LTS Release: 18.04 Codename: bionic 2、原文件备份 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak 3、查…