竞赛保研 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉

news2025/2/23 7:02:40

文章目录

  • 0 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习多目标跟踪 实时检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新


if FLAGS.mode == ‘eager_tf’:
# Eager mode is great for debugging
# Non eager graph mode is recommended for real training
avg_loss = tf.keras.metrics.Mean(‘loss’, dtype=tf.float32)
avg_val_loss = tf.keras.metrics.Mean(‘val_loss’, dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1391719.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

工业平板定制方案_基于联发科、紫光展锐平台的工业平板电脑方案

工业平板主板采用联发科MT6762平台方案,搭载Android 11.0操作系统, 主频最高2.0GHz,效能有大幅提升;采用12nm先进工艺,具有低功耗高性能的特点。 该工业平板主板搭载了IMG GE8320图形处理器,最高主频为680MHz, 支持108…

Vue-24、Vue过滤器

1、效果 2、过滤器实现 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>过滤器</title><script type"text/javascript" src"https://cdn.jsdelivr.net/npm/vue2/dist/vue.…

有序矩阵中第 K 小的元素

题目链接 有序矩阵中第 K 小的元素 题目描述 注意点 每行和每列元素均按升序排序找到一个内存复杂度优于 O(n) 的解决方案 解答思路 使用二分查找&#xff0c;思路为&#xff1a; &#xff08;1&#xff09;因为左上角的元素值更小&#xff0c;右下角的元素值更大&#xf…

dp专题13 零钱兑换II

本题链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 思路&#xff1a; 根据题意&#xff0c;这是一道很裸的背包问题&#xff0c;其中这里是返回 背包方案数 的。 我们可以直接推出公式 &#xff1a; dp [ j ] dp[ j - coins[ i ] ] 在我之前…

User-Agent(用户代理)是什么?

User-Agent&#xff08;用户代理&#xff09;是什么&#xff1f; User-Agent 即用户代理&#xff0c;简称“UA”&#xff0c;它是一个特殊字符串头。网站服务器通过识别 “UA”来确定用户所使用的操作系统版本、CPU 类型、浏览器版本等信息。而网站服务器则通过判断 UA 来给客…

onlyoffice源码编译

环境准备 官网要求CPU dual core 2 GHz or better RAM at least 2 GB, but depends of the host OS. More is better HDD at least 40 GB of free space SWAP at least 4 GB, but depends of the host OS. More is better SoftwareOS 64-bit Ubuntu 16.04 The solution has be…

Linux命令之pwd,cd,ls,cat,more,less,head,tail文件目录类命令的使用

一、实验题 1、在桌面打开终端&#xff0c;查看当前目录 2、改变目录位置至当前目录的父目录 3、改变目录位置至用户的家目录 4、利用绝对路径改变目录到/usr/local目录下 5、列出当前目录下的文件及目录 6、列出包括以“.”开始的隐藏文件在内的所有文件 7、列出当前目录下所…

SQL实践:利用tag检索文件的多种情况讨论(二)

在上一篇文章SQL实践&#xff1a;利用tag检索文件的多种情况讨论中&#xff0c;我们介绍了在使用外键的方式为数据关联tag后&#xff0c;如何筛选&#xff1a; 如何筛选包含某一个tag的数据如何筛选包含且只包含某一个tag的数据如何筛选包含多个指定tag的数据 这篇文章主要是…

Mysql 安装通过mysql installer安装+配置环境+连接可视化工具

注意&#xff1a;不适合纯小白&#xff0c;小白建议移步别的大佬MySQL详细安装教程 目录 注意&#xff1a;不适合纯小白&#xff0c;小白建议移步别的大佬MySQL详细安装教程 前言 准备工作 一、Mysql下载 二、MySQL installer 安装以及系统环境配置 三、检验MySQL 四、可…

docker-consul部署

目录 一、环境 二、consul服务器 三、registrator服务器 四、consul-template 一、环境 consul服务器 192.168.246.10 运行consul服务、nginx服务、consul-template守护进程 registrator服务器 192.168.246.11 运行registrator容器、运行ngi…

Docker RTMP服务器搭建与视频流推送示例(流媒体服务器tiangolo/nginx-rtmp,推流客户端ffmpeg)

文章目录 RTMP服务器搭建与视频流推送第一部分&#xff1a;搭建RTMP服务器&#xff08;流媒体服务器&#xff09;1.1 安装Docker1.2 搭建RTMP服务器 第二部分&#xff1a;使用ffmpeg进行视频推流&#xff08;推流客户端&#xff09;2.1 安装ffmpeg2.2 使用ffmpeg推流 第三部分&…

matlab 直道转向时方向盘最小转角算法

1、内容简介 略 33-可以交流、咨询、答疑 2、内容说明 汽车主动转向&#xff0c;直道转向时方向盘最小转角算法&#xff0c;一个m脚本和simulink的计算结果 略 3、仿真分析 略 4、参考论文 汽车主动转向关键技术研究

ElasticSearch概述+SpringBoot 集成ES

ES概述 开源的、高扩展的、分布式全文检索引擎【站内搜索】 解决问题 1.搜索词是一个整体时&#xff0c;不能拆分&#xff08;mysql整体连续&#xff09; 2.效率会低&#xff0c;不会用到索引&#xff08;mysql索引失效&#xff09; 解决方式 进行数据的存储&#xff08;只存储…

自动驾驶轨迹规划之碰撞检测(二)

欢迎大家关注我的B站&#xff1a; 偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com) 目录 1.基于凸优化 2.具身足迹 3. ESDF 自动驾驶轨迹规划之碰撞检测&#xff08;一&#xff09;-CSDN博客 大家可以先阅读之前的博客 1.基于…

FFMPEG解码实时流,支持cpu、gpu解码

官网下载的ffmpeg目前只能下载到X64版本的库&#xff0c;具体编译请参考windows编译ffmpeg源码&#xff08;32位库&#xff09;_windows 32位ffmpeg动态库-CSDN博客 直接上代码 int VideoDecodeModule::Open(std::string strUrl) {AVFormatContext *pFormatCtx nullptr;AVCo…

nestjs之JWT认证实现流程

nestjs的jwt认证利用了 Passport.js 的认证机制。要根据这个源码实现您自己的 AuthGuard&#xff0c;需要理解几个关键部分&#xff1a;如何集成 Passport.js、如何处理认证结果&#xff0c;以及如何使用 NestJS 的依赖注入系统。 先自定义一个策略函数类 // wsy.strategy.ts …

idea 安装免费Ai工具 codeium

目录 概述 ide安装 使用 chat问答 自动写代码 除此外小功能 概述 这已经是我目前用的最好免费的Ai工具了&#xff0c;当然你要是有钱最好还是用点花钱的&#xff0c;比如copilot&#xff0c;他可以在idea全家桶包括vs&#xff0c;还有c/c的vs上运行&#xff0c;还贼强&am…

宝塔发布网站问题汇总和记录

1、添加网站站点后打不开 解决办法&#xff0c;关闭防跨站攻击2 2、laravel项目部署到linux的时候出现The stream or file "/home/www/storage/logs/laravel.log" could not be opened in append mode 给目录加权限 chmod -R 777 storage 3、Class "Redis"…

5G阅信在汽车销售行业的应用与优势

5G阅信在汽车销售行业的应用与优势包括&#xff1a;提升客户体验&#xff0c;提供更快速、稳定的网络服务&#xff1b;实时数据传输&#xff0c;更好地了解客户需求&#xff1b;增强现实应用&#xff0c;提供更真实、直观的购车体验&#xff1b;创新营销方式&#xff0c;如短视…

介绍一个强大的免费开源.net反编译工具

dnSpy dnSpy 是一个用C#开发&#xff0c;开源的调试器和.NET 汇编编辑器。 即使您没有任何可用的源代码&#xff0c;也可以使用它来编辑和调试程序&#xff0c;并可以把代码导出成.net工程。