MiniTab的拟合回归模型的分析

news2024/11/15 9:15:09

拟合回归模型概述

使用拟合回归模型和普通最小二乘法可以描述一组预测变量和一个连续响应之间的关系。可以包括交互作用项多项式项执行逐步回归变换偏斜数据

例如,房地产评估人员想了解城市公寓与多个预测变量(包括建筑面积、可用单元数量、建筑年限和到市中心的距离)之间的相关性。检验员可以使用多个回归来确定预测变量是否与销售价格显著相关。

在执行分析之后,Minitab 将存储模型,以便执行如下操作:

  • 预测新观测值的响应。
  • 绘制变量之间的关系图。
  • 查找对一个或多个响应进行优化的值。

菜单位置:统计 > 回归 > 回归 > 拟合回归模型。

何时使用备择分析

  • 如果标绘一个连续(数值)预测变量和一个连续响应之间的关系,请使用 拟合线图。
  • 如果具有嵌套或随机的类别预测变量,则在具有所有固定因子时使用拟合一般线性模型,或在具有随机因子时使用拟合混合效应模型。
  • 如果的响应变量有两个类别(如通过和失败),请使用拟合二元 Logistic 模型。
  • 如果的响应变量包含三个或更多采用一定自然顺序的类别(如非常不同意、不同意、中立、同意和非常同意),请使用顺序 Logistic 回归。
  • 如果的响应变量包含三个或更多不采用自然顺序的类别(如擦痕、凹陷和撕裂),请使用名义 Logistic 回归。
  • 如果的响应变量对发生次数(如缺陷数量)进行计数,请使用拟合 Poisson 模型。

数据注意事项

为了确保结果有效,收集数据、执行分析和解释结果时考虑以下5个准则。

1、预测变量可以是连续变量或类别变量

连续变量可以测量和排序,它可以拥有介于两个值之间的无限数量的值。例如,轮胎样本的直径是连续变量。

类别变量包含有限、可计数的类别数或可区分组数。类别数据可能不是逻辑顺序。例如,类别变量包括性别、材料类型和付款方式。

如果有离散变量,则可以决定是将它视为连续预测变量还是类别预测变量。离散变量可以进行测量和排序,但是它具有可计数的值。例如,家庭成员数是离散变量。可根据水平数以及分析的目的来决定将离散变量视为连续变量还是类别变量。

  • 如果标绘一个连续(数值)预测变量和一个连续响应之间的关系,请使用 拟合线图。
  • 如果具有嵌套或随机的类别预测变量,则在具有所有固定因子时使用 拟合一般线性模型,或在具有随机因子时使用 拟合混合效应模型。

2、响应变量应当是连续变量

如果响应变量是类别变量,则的模型不太可能满足分析假定、准确描述数据或者进行有用的预测。

  • 如果的响应变量有两个类别(如通过和失败),请使用 拟合二元 Logistic 模型。
  • 如果的响应变量包含三个或更多采用一定自然顺序的类别(如非常不同意、不同意、中立、同意和非常同意),请使用 顺序 Logistic 回归。
  • 如果的响应变量包含三个或更多不采用自然顺序的类别(如擦痕、凹陷和撕裂),请使用 名义 Logistic 回归。
  • 如果的响应变量对发生次数(如缺陷数量)进行计数,请使用 拟合Poisson模型。

3、使用最佳做法收集数据

要确保结果有效,请考虑以下准则:

  • 确保数据代表感兴趣的总体。
  • 收集足够多的数据以提供必要的精确度。
  • 尽可能准确和精确地测量变量。
  • 以数据的收集顺序记录数据。

4、预测变量之间的相关性(又称为多重共线性)应当严重

如果多重共线性严重,则可能无法确定要在模型中包括哪些预测变量。要确定多重共线性的严重性,请使用输出的“系数”表格中的方差膨胀因子 (VIF)。

5、模型应当提供良好的数据拟合

如果模型无法与数据拟合,则结果可能会具有误导性。在输出中,使用残值图异常观测值诊断统计量以及模型汇总统计量可以确定模型对数据的拟合优度。

拟合回归模型示例

研究化学家想要了解多个预测变量与棉布抗皱性的关联性。化学家检查 32 件在不同的凝固时间、凝固温度、甲醛浓度和催化剂比率下生产出的棉纤维素。对每件棉布都记录了耐压等级(用来度量抗皱性)。

浓度

比率

温度

时间

评级

8

4

100

1

1.4

2

4

180

7

2.25

7

4

180

1

4.6

10

7

120

5

4.9

7

4

180

5

4.6

7

7

180

1

4.75

7

13

140

1

4.6

5

4

160

7

4.5

4

7

140

3

4.8

5

1

100

7

1.4

8

10

140

3

4.7

2

4

100

3

1.6

4

10

180

3

4.5

6

7

120

7

4.7

10

13

180

3

4.8

4

10

160

5

4.6

4

13

100

7

4.3

10

10

120

7

4.9

5

4

100

1

1.7

8

13

140

1

4.6

10

1

180

1

2.6

2

13

140

1

3.1

6

13

180

7

4.7

7

1

120

7

2.5

5

13

140

1

4.5

8

1

160

7

2

4

1

180

7

1.8

6

1

160

1

1.5

4

1

100

1

1.3

7

10

100

7

4.6

4

1

100

1

1.4

4

1

100

1

1.45

参数设置如下图:

“图形”设置如下图:

主要结果分析

作为预测变量的温度、催化剂比率和甲醛浓度的 p 值小于显著水平 0.05。这些结果表示这些预测变量对抗皱性具有统计意义上非常显著的效应。时间的 p 值大于 0.05,这表示没有足够的证据可以断定时间与响应相关。化学家可能需要重新拟合不具有此预测变量的模型。

Pareto 图显示在显著性水平为 0.05 时,温度、催化剂比率和甲醛浓度的效应在统计意义上显著。最大的效应是催化剂比率,因为它延伸得最远。最小的效应是时间效应,因为它延伸得最近。

此残差图指示该模型可能有问题

  • 残差与拟合值图中的点并未随机分布在零附近。但似乎存在表示不同数据组的点群集。化学家应该研究这些组以确定其原因。
  • 残差与比率图显示了弯曲,这表明催化剂比率与皱纹之间具有曲线关系。化学家应该考虑向该模型添加比率的二次项。

关键输出包括 p 值、系数、R2 及残差图

步骤 1:确定哪些项对响应变异性的贡献最大

使用 Pareto 效应图可比较项的相对量值与统计显著性。该图在模型保留误差的自由度时显示。

Minitab 按照项的绝对值的递减顺序为这些项绘图。图中的参考线表明哪些项是显著项。默认情况下,Minitab 使用显著性水平 0.05 绘制参考线。

主要结果:Pareto 图

在这些结果中,3 个项的效应在统计意义上显著 (α = 0.05)。显著效应为甲醛浓度 (A)、催化剂比率 (B) 和温度 (C)。时间效应 (D) 在统计意义上不显著,因为该条形未延伸出红线

最大的效应是催化剂比率 (B),因为该条形延伸得最远。时间效应 (D) 为最小效应,因为该条形延伸得最近。

步骤 2:确定响应变量和项之间的关联在统计意义上是否显著

要确定响应与模型中每个项之间的关联在统计意义上是否显著,请将该项的 P 值与显著性水平进行比较以评估原假设。原假设声明该项与响应之间没有关联。通常,显著性水平(用 α 或 alpha 表示)为 0.05 即可。显著性水平 0.05 指示在实际上不存在关联时得出存在关联的风险为 5%。

P 值 ≤ α:关联在统计意义上显著

如果 P 值小于或等于显著性水平,则可以得出响应变量与项之间的关联在统计意义上显著的结论。

P 值 > α:关联在统计意义上不显著

如果 p 值大于显著性水平,则无法得出响应变量与该项之间的关联在统计意义上显著的结论。可能希望重新拟合没有该项的模型。

如果多个预测变量与响应在统计意义上没有显著的关联,则可以通过删除项(一次删除一个)来简化模型

如果一个模型项在统计意义上显著,则解释取决于该项的类型。解释如下所示:

  • 如果一个连续预测变量显著,则可以得出该预测变量的系数不等于零的结论。
  • 如果一个类别预测变量显著,则可以断定并非所有水平均值都相等。
  • 如果一个交互作用项显著,则一个因子与响应之间的关系取决于该项中的其他因子。
  • 如果一个多项式项显著,则可以得出数据包含弯曲的结论。

主要结果:P 值、系数

甲醛浓度、催化剂比率和温度等预测变量的 P 值小于显著水平 .05。这些结果表示这些预测变量与抗皱性之间存在统计上非常显著的关系。例如,甲醛浓度系数估计浓度每增加一个单位抗皱性平均值增加 .1545 个单位,而模型中的其他项保持恒定。

时间的 P 值大于 .05,这表示没有足够的证据可以断定时间与响应变量相关。化学家可能需要重新拟合不具有此预测变量的模型。

步骤 3:确定模型对数据的拟合优度

要确定模型与数据的拟合优度,请检查模型汇总表中的拟合优度统计量。

S:使用 S 可评估模型描述响应值的程度。使用 S 替代 R2 统计量,以比较不具有常量的模型拟合。

S 以响应变量的单位进行度量,它表示数据值与拟合值的距离。S 值越低,模型描述响应的程度越高。但是,自身低 S 值并不表明模型符合模型假设。应检查残差图来验证假设。

R-sq:R2 值越高,模型拟合数据的优度越高。R2 始终介于 0% 和 100% 之间。

如果向模型添加其他预测变量,则 R2 会始终增加。例如,最佳的 5 预测变量模型的 R2 始终比最佳的 4 预测变量模型的高。因此,比较相同大小的模型时 R2 最有效。

R-sq(调整):在想要比较具有不同数量的预测变量的情况下,使用调整的 R2。如果向模型添加预测变量,即使模型没有实际改善,R2 也会始终增加。调整的 R2 值包含模型中的预测变量数,以便帮助选择正确的模型。

R-sq(预测):使用预测的 R2 可确定模型对新观测值的响应进行预测的程度。具有较大预测 R2 值的模型的预测能力也较出色。

实质上,小于 R2 的预测的 R2 可能表明模型过度拟合在向总体中添加不太重要的影响项的情况下,可能会发生过度拟合模型。模型针对样本数据而定制,因此可能对于总体预测不太有效。

在比较模型方面,预测的 R2 还可能比调整的 R2 更有效,因为它是用模型计算中未包含的观测值计算得出的。

AICc 和 BIC:当显示逐步方法每个步骤的详细信息时或者显示分析的扩展结果时,Minitab 会多显示两个统计量。这些统计量是更正的 Akaike 信息标准 (AICc) 和 Bayesian 信息标准 (BIC)。使用这些统计量可以比较不同的模型。对于每个统计量,较小的值比较合意。

解释拟合优度统计量时,请考虑以下几点:

  1. 样本数量较小则不能提供对于响应变量和预测变量之间关系强度的精确估计。如果需要 R2 更为精确,则应当使用较大的样本(通常为 40 或更多)。
  2. 拟合优度统计量只是模型拟合数据优度的一种度量。即使模型具有合意的值,也应当检查残差图,以验证模型是否符合模型假设。

 

主要结果:S、R-sq、R-Sq(调整)、R-Sq(预测)

在这些结果中,模型可以解释响应变量中约 73% 的变异。对于这些数据,R2 值表示模型与数据充分拟合。如果要拟合具有不同预测变量的其他模型,请使用调整的 R2 值和预测的 R2 值比较模型与数据的拟合。

步骤 4:确定模型是否符合分析的假设条件

使用残差图可帮助确定模型是否适用并符合分析的假设。如果不符合此假设,则模型可能无法充分拟合数据,在解释结果时应当格外小心。

残差与拟合值图

使用残差与拟合值图可验证残差随机分布和具有常量方差的假设。理想情况下,点应当在 0 的两端随机分布,点中无可辨识的模式

下表中的模式可能表示该模型不满足模型假设。

模式

模式的含义

残差相对拟合值呈扇形或不均匀分散

异方差

曲线

缺少高阶项

远离 0 的点

异常值

在 X 方向远离其他点的点

有影响的点

此残差与拟合值图中的点并未随机分布在零附近。但似乎存在表示不同数据组的点群集。应该研究这些组以确定其原因。

 

残差与顺序图

使用残差与顺序图可验证残差独立于其他残差的假设。当以时序显示时,独立残差不显示趋势或模式。点中的模式可能表明,彼此相近的残差可能相关联,因此并不独立。理想情况下,图中的残差应围绕中心线随机分布:

残差与顺序图

使用残差与顺序图可验证残差独立于其他残差的假设。当以时序显示时,独立残差不显示趋势或模式。点中的模式可能表明,彼此相近的残差可能相关联,因此并不独立。理想情况下,图中的残差应围绕中心线随机分布:

如果查看模式,便可查出原因。下列类型的模式可能表明残差属于依赖项。

趋势:

偏移:

周期:

残差的正态概率图

使用残差正态概率图可验证残差呈正态分布的假设。残差的正态概率图应该大致为一条直线

下表中的模式可能表示该模型不满足模型假设。

模式

模式的含义

非直线

非正态性

远离直线的点

异常值

斜率不断变化

未确定的变量

在此正态概率图中,点通常为一条直线。没有证据表明存在非正态性、异常值或未确定的变量。

Tips:为拟合回归模型存储统计量

统计 > 回归 > 回归 > 拟合回归模型 > 存储

可以将分析统计量保存到工作表中,以便可以将它们用在其他分析、图形和宏中。Minitab 将选定的统计量存储在最后一个数据列后面。存储列的名称以一个数字结尾,如果将同一个统计量存储多次,结尾的数字会递增。

可以存储的统计量

  1. 拟合:Minitab 将拟合值存储在 FITS 列中。
  2. 残差:Minitab 将残差存储在 RESI 列中。
  3. 标准化残差:Minitab 将标准化残差存储在 SRES 列中。
  4. 删后残差:Minitab 将删后残差存储在 TRES 列中。
  5. 杠杆率:Minitab 将杠杆率存储在 HI 列中。
  6. Cook 距离:Minitab 将 Cook 距离存储在 COOK 列中。
  7. DFITS:Minitab 将 DFITS 存储在 DFIT 列中。
  8. 系数:Minitab 将系数存储在 COEF 列中。
  9. 设计矩阵:Minitab 将设计矩阵存储在名为 XMAT 的矩阵中。要查看矩阵,请选择数据 > 显示数据。要将矩阵复制到工作表,请选择数据 > 复制 > 矩阵到列。
  10. Box-Cox 变换:如果要变换响应变量,可以存储有关变换的信息。
  11. 响应的 Box-Cox 变换:Minitab 将响应的变换值存储在 BCRESP 列中。
  12. 原始响应的拟合:Minitab 将原始响应的拟合值存储在 BFITS 列中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1387616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法与数据结构】343、LeetCode整数拆分

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:博主做这道题的时候一直在思考,如何找到 k k k个正整数, k k k究竟为多少合适。…

迈向高效LLM微调:低秩适应(LoRA)技术的原理与实践

在快速发展的人工智能领域中,以高效和有效的方式使用大型语言模型(LLM)变得越来越重要。在本文中,您将学习如何以计算高效的方式使用低秩适应(LoRA)对LLM进行调整! 为什么需要微调?…

【Java数据结构】03-二叉树,树和森林

4 二叉树、树和森林 重点章节,在选择,填空,综合中都有考察到。 4.1 掌握二叉树、树和森林的定义以及它们之间的异同点 1. 二叉树(Binary Tree) 定义: 二叉树是一种特殊的树结构,其中每个节点…

vue-ESlint代码规范及修复

1. 介绍 ESLint:是一个代码检查工具,用来检查你的代码是否符合指定的规则(你和你的团队可以自行约定一套规则)。 在创建项目时,我们使用的是 JavaScript Standard Style 代码风格的规则。 规范网址:https://standardjs.com/rules-zhcn.htm…

街机模拟游戏逆向工程(HACKROM)教程:[2]68K汇编的一些规则

指令中的符号(#,$,%) 在指令中,我们最常见到的符号有#和$。 这其中的"#"符号是告诉汇编程序,这个符号后面的数值为一个立即数,而不是一个偏移值或一个地址。立即数可以理解为"单纯的一个数值"。我们会在后面通过一些实…

Dtop环球嘉年华“全球Web 3.0商业场景应用峰会暨2024战略研讨会”曼谷圆满举办

Dtop环球嘉年华“全球Web 3.0商业场景应用峰会暨2024战略研讨会” (Global Web 3.0 Business Scene Application Summit And 2024 Strategic Symposium)在2024年1月12日于泰国曼谷举办,峰会以“全球Web 3.0商业场景应用生态”为主题&#xff…

vue3中,vue-echarts基本使用(柱状图、饼图、折线图)

注意:vue-echarts在使用前要先安装echarts,不要只安装vue-echarts这一个 echarts官网地址:Apache EChartsApache ECharts,一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互&#xf…

SpringMVC中五种数据提交的方式

单个数据注入:在方法中声明一个和表单提交的参数名称相同的参数,由框架按照名称直接注入。对象封装注入:在方法中声明一个自定义的实体类参数,框架调用实体类中相应的setter方法注入属性值,只要保证实体类中成员变量的…

JAVAEE初阶 多线程进阶(二)

多线程进阶相关知识点 一.CAS1.1 CAS的原子类1.2 实现自旋锁1.3CAS中的ABA问题1.4 ABA问题的解决 二. callable接口三.reentrantLock3.1 reentrantLock与synchronized区别 四.信息量 semaphore五. CountDownLatch六. concurrentHashMap6.1 concurrentHashMap的优点 一.CAS CAS …

【SpringMVC】—— 如何配置使用SpringMVC(详细步骤)

目录 引言 使用 1、新建模块 2、导入坐标 3、创建SpringMVC控制器类 4、初始化SpringMVC环境 5、初始化Servlet容器,加载SpringMVC环境 6、配置运行 引言 SpringMVC是一种基于Java实现MVC模型的轻量级Web框架,SpringMVC是表现层(web层)的框架,也…

评职称到底能给你带来什么❓❓

对于个人来说的用处: ①升职加薪 职称等级越高,职位越高,可享受的待遇就越高 ②前置资格 早评职称,前置职称就可以早几年拿,才能更快 评审更高级职称 ③提高个人身份 职称是专业技术人员能力和水平的表现,是…

吼!原来教师这样发布学生期末成绩,轻松没烦恼

​随着科技的进步和教育的不断创新,教师发布学生期末成绩的方式也在逐渐发生变化。传统的方式,如纸质成绩单和口头通知,已经不能满足现代教育的需求。那么,教师应该如何更有效地发布学生期末成绩呢? 一、电子成绩单 电…

Unity | AudioSource 无声音

Unity | AudioSource 无声音 你是否也会遇到相同的问题?AudioSource没声音? 解决: 注意查看一下几处声音设置:

Java多线程——并发和并行、实现方法

多线程 并发和并行 实现方法 代码演示 方式一 package com.qiong.thread1;public class MyThread extends Thread{Overridepublic void run() {for (int i 0; i < 20; i) {System.out.println(getName() "Hello World");}} }package com.qiong.thread1;public…

linux 时间同步后还是偏移

通过crond 设置定时一分钟同步一次时间&#xff1b; 查看日志每次同步都偏移几秒 怀疑是其他程序又做了时间同步&#xff1b; 检查发现有chronyd服务在运行。chronyd也是同步时间的服务 最终解决&#xff1a;关闭chronyd或者用chronyd同步时间 systemctl stop chronydsystemc…

如何优雅地使用Jupyter?基本用法及Jupyter插件使用

Jupyter是一种常用的交互式编辑器&#xff0c;下面我将分享Jupyter的基本用法&#xff0c;以及在日常写代码中使用最多的两个Jupyter插件&#xff0c;一个是JupyterLab&#xff0c;另一个用于给代码生成目录&#xff0c;熟练使用这两个插件&#xff0c;可极大提高我们的代码效率…

腾讯云服务器购买指南,2024更新购买步骤

腾讯云服务器购买流程很简单&#xff0c;有两种购买方式&#xff0c;直接在官方活动上购买比较划算&#xff0c;在云服务器CVM或轻量应用服务器页面自定义购买价格比较贵&#xff0c;但是自定义购买云服务器CPU内存带宽配置选择范围广&#xff0c;活动上购买只能选择固定的活动…

开源笔记工具AFFiNE本地部署并结合内网穿透

前言 本篇文章讲解Notion开源平替全能知识库工具AFFINE如何本地部署&#xff0c;并实现公网远程访问。AFFiNE 是一个全新的开源项目&#xff0c;旨在克服 Notion 和 Miro 在安全和隐私方面的一些局限性。它的设计目标是帮助用户将会议记录、待办事项、文档中的目标、视频会议白…

L1-025 正整数A+B(Java)

题的目标很简单&#xff0c;就是求两个正整数A和B的和&#xff0c;其中A和B都在区间[1,1000]。稍微有点麻烦的是&#xff0c;输入并不保证是两个正整数。 输入格式&#xff1a; 输入在一行给出A和B&#xff0c;其间以空格分开。问题是A和B不一定是满足要求的正整数&#xff0…

基于Simdroid电子散热模块的电子设备机箱散热设计与优化

一、背景介绍 热设计就是通过合理的散热方式保证良好的热环境&#xff0c;确保电子设备可靠的工作。随着电子技术的迅速发展&#xff0c;电子设备的结构越来越复杂&#xff0c;且越来越趋于小型化&#xff0c;散热问题成为了影响设备可靠性的重要因素。据统计&#xff0c;电子…