imgaug库指南(23):从入门到精通的【图像增强】之旅

news2024/11/18 15:23:45

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(11):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性高斯噪声(AdditiveGaussianNoise方法)
imgaug库指南(12):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)
imgaug库指南(13):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性泊松噪声(AdditivePoissonNoise方法)
imgaug库指南(14):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(Multiply方法)
imgaug库指南(15):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(MultiplyElementwise方法)
imgaug库指南(16):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Cutout方法
imgaug库指南(17):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout方法
imgaug库指南(18):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— CoarseDropout方法
imgaug库指南(19):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout2D方法
imgaug库指南(20):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— TotalDropout方法
imgaug库指南(21):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— ReplaceElementwise方法
imgaug库指南(22):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— ImpulseNoise方法

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— SaltAndPepper方法


SaltAndPepper方法

功能介绍

iaa.SaltAndPepperimgaug库中的一个方法,用于在图像中添加椒盐噪声。椒盐噪声是数字图像处理中常见的一种噪声类型,表现为随机出现的黑白像素点。其中“盐”指的是白色的噪声点(像素值设置为最大值),而“椒”指的是黑色的噪声点(像素值设置为最小值)。iaa.SaltAndPepper方法模拟了这种噪声,可以应用于多种场景中。以下是三个具体的使用场景举例:

  1. 数据增强:在深度学习和机器学习中,为了提高模型的泛化能力,通常需要对训练数据进行增强。通过添加椒盐噪声,可以增加训练数据的多样性,使模型能够学习处理噪声干扰的情况。这有助于提高模型在实际应用中的鲁棒性和稳定性。

  2. 模拟真实世界条件:在真实世界中,图像往往会受到各种噪声的干扰,包括椒盐噪声。通过使用iaa.SaltAndPepper方法,可以在图像中添加这种噪声,从而模拟真实世界中的图像条件。这对于测试和验证图像处理算法或计算机视觉系统在真实环境中的性能非常有用。

  3. 图像质量评估:在图像处理和计算机视觉领域,评估图像质量是一个重要的任务。通过添加椒盐噪声,可以模拟图像质量下降的情况,并评估不同算法或技术对噪声的鲁棒性。这有助于比较不同方法在处理噪声图像时的性能,并为实际应用中选择最佳的图像处理算法提供参考。

语法

import imgaug.augmenters as iaa
aug = iaa.SaltAndPepper(p=(0.0, 0.03), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

以下是对iaa.SaltAndPepper方法中各个参数的详细介绍:

  1. p

    • 类型:可以是浮点数|浮点数元组|浮点数列表。
    • 描述:将像素替换为椒盐噪声的概率。。
      • p为浮点数,则表示将像素替换为椒盐噪声的概率;
      • p为元组(a, b),则将像素替换为椒盐噪声的概率为从区间[a, b]中采样的随机数;
      • p为列表,则将像素替换为椒盐噪声的概率为从列表中随机采样的浮点数;
  2. per_channel

    • 类型:布尔值(TrueFalse)|浮点数。
    • 描述
      • per_channelTrue,则RGB图像的每个像素位置所对应的三个通道像素值可能不会同时替换为椒盐噪声 ==> RGB图像会出现彩色失真;
      • per_channelFalse,则RGB图像的每个像素位置所对应的三个通道像素值会同时替换为椒盐噪声;
      • per_channel为区间[0,1]的浮点数,假设per_channel=0.6,那么对于60%的图像,per_channelTrue;对于剩余的40%的图像,per_channelFalse
  3. seed

    • 类型:整数|None
    • 描述:用于设置随机数生成器的种子。如果提供了种子,则结果将是可重复的。默认值为None,表示随机数生成器将使用随机种子。
  4. name

    • 类型:字符串或None
    • 描述:用于标识增强器的名称。如果提供了名称,则可以在日志和可视化中识别该增强器。默认值为None,表示增强器将没有名称。

示例代码

  1. 使用不同的p
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建数据增强器
aug1 = iaa.SaltAndPepper(p=0.1, per_channel=False, seed=0)
aug2 = iaa.SaltAndPepper(p=0.3, per_channel=False, seed=0)
aug3 = iaa.SaltAndPepper(p=0.5, per_channel=False, seed=0)

# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化(使用不同的p参数)

可以从图1看到:当p参数设置的越接近1.0时,图像增强后的新图像将会出现更多的椒盐噪声。


  1. per_channel设置为True
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建数据增强器
aug1 = iaa.SaltAndPepper(p=0.1, per_channel=True, seed=0)
aug2 = iaa.SaltAndPepper(p=0.3, per_channel=True, seed=0)
aug3 = iaa.SaltAndPepper(p=0.5, per_channel=True, seed=0)

# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化(使用不同的p参数,且per_channel设置为True)

可以从图2看到:当per_channel设置为True时,图像增强后的新图像将会出现彩色失真。

注意事项

  1. p的选择p参数决定了一副图像椒盐噪声的强度。较大的p值可能会导致新图像出现严重失真。需要根据具体场景选择合适的p
  2. 随机性和可复现性(seed):如果需要可复现的结果,应该设置seed参数为一个固定的整数值。这将初始化随机数生成器,使得每次运行增强操作时都能得到相同的结果;
  3. 与其他增强操作的组合iaa.SaltAndPepper可以与其他imgaug增强操作组合使用,以创建更复杂的增强管道。在组合多个增强操作时,应注意它们的顺序,因为不同的顺序可能会导致不同的最终效果。

总结

iaa.SaltAndPepperimgaug图像处理库中的一个非常有用的方法,它允许用户模拟椒盐噪声并应用到图像上。椒盐噪声是一种常见的数字图像噪声,其中像素被随机替换为最大值(白色,即“盐”)或最小值(黑色,即“椒”)。

iaa.SaltAndPepper方法的主要特点和用途如下:

特点

  1. 概率控制:通过p参数,用户可以精确控制每个像素被替换为盐或椒的概率,从而实现不同程度的噪声干扰。

  2. 通道独立性:通过per_channel参数,可以选择是否对每个颜色通道独立地应用噪声,这在处理彩色图像时尤为重要。

  3. 随机性管理:虽然方法本身是随机的,但用户可以通过设置seed参数来控制随机数生成器,确保增强过程的可重复性。

  4. 易于集成iaa.SaltAndPepper可以轻松地与其他imgaug增强器结合使用,构建复杂的图像增强管道。

用途

  1. 数据增强:在机器学习和深度学习中,iaa.SaltAndPepper常被用于数据增强,以增加训练集的多样性,提高模型对噪声和异常值的鲁棒性。

  2. 模拟真实场景:在模拟现实世界的图像条件时,添加椒盐噪声可以帮助评估算法在实际应用中处理噪声数据的能力。

  3. 算法测试:在图像处理和计算机视觉研究中,椒盐噪声常用于测试算法的稳定性和性能。

  4. 图像质量评估:通过向图像中添加可控的噪声,可以评估不同图像处理算法在降噪方面的效果。

总体而言,iaa.SaltAndPepper是一个强大且灵活的工具,适用于各种需要添加椒盐噪声的图像处理任务。


小结

imgaug是一个顶级的图像增强库,具备非常多的数据增强方法。它为你提供创造丰富多样的训练数据的机会,从而显著提升深度学习模型的性能。通过精心定制变换序列和参数,你能灵活应对各类应用场景,使我们在处理计算机视觉的数据增强问题时游刃有余。随着深度学习的持续发展,imgaug将在未来持续展现其不可或缺的价值。因此,明智之举是将imgaug纳入你的数据增强工具箱,为你的项目带来更多可能性。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1386136.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DMVAE复现

复现结果–M->S:88.11,S->M:83.75,Joint:44.63,与原文差距在0.5个点内,可以接受 额外信息 第三篇完全复现的论文

Python实现递归最小二乘法回归模型(RecursiveLS算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 RLS主要是在误差平方和最小的原则基础上, 提出一种解析的拟合模型参数的迭代递推公式;可以实现在新的样…

案例126:基于微信小程序的民大食堂用餐综合服务平台

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

warning: GDB: Failed to set controlling terminal: Operation not permitted

运行环境 windows 10 wsl 1 ubuntu 20.04子系统 出现这个问题是因为运行在wsl1上,把系统运行到wsl2就行了。 解决办法 运行到wsl2 https://zhuanlan.zhihu.com/p/337104547 wsl2安装办法 关于编译个一个小问题,在vscode编译的一定要选对编译器&#…

开关电源如何覆铜

开关电源如何覆铜 开关电源覆铜是一个很重要的技术方法,如果没有很好的覆铜,就有可能会造成开关电源芯片的损坏。先介绍常见的开关电源电路: 图 1开关电源电路 从左到右分别是非同步整流Buck电路和同步整流Buck电路,第二排从左到…

Openharmony入门教程 相册问题修复

问题视频: 第五章-保存应用数据 _调用系统相册添加图片_哔哩哔哩_bilibili 跟着视频学习了Openharmony的入门,好不容易到了最后一个章节了,结果遇到了功能无法使用,还是得想办法 问题描述: 按照视频上的代码&#xf…

opencv-py-基础操作

文章目录 阈值分割灰度图效果 二值化效果 二值化取反效果 截取效果 TOZERO效果 TOZERO取反效果 滤波均值滤波高斯滤波中值滤波 图像拼接简单的横向和纵向拼接效果(三幅图片分别是均值滤波,高斯滤波,中值滤波) 腐蚀与膨胀 阈值分割…

vue下载文件流效果demo(整理)

在 Vue 项目中&#xff0c;你可以使用 FileSaver.js 库来方便地下载文件流。FileSaver.js 封装了不同浏览器的下载方式&#xff0c;使得下载文件更加简单和兼容。以下是一个完整的示例方法&#xff1a; 首先&#xff0c;安装 FileSaver.js 库&#xff1a; <template>&l…

如何通过内网穿透实现公网访问Portainer管理监控Docker容器

文章目录 前言1. 部署Portainer2. 本地访问Portainer3. Linux 安装cpolar4. 配置Portainer 公网访问地址5. 公网远程访问Portainer6. 固定Portainer公网地址 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风…

《如何制作类mnist的金融数据集》——1.数据集制作思路

1&#xff0e;数据集制作思路&#xff08;生成用于拟合金融趋势图像的分段线性函数&#xff09; 那么如何去制作这样的一个类minist的金融趋势曲线数据集呢&#xff1f; 还是如上图所示&#xff0c;为了使类别平均分布&#xff0c;因此可以选取三种“buy”的曲线、三种“sell”…

云渲染农场渲染和自己搭建农场渲染怎么选?哪个更划算?

&#xfeff;当我们面临繁重或紧急的渲染任务时&#xff0c;通常会选择云渲染的解决方案。可能很多人会问&#xff0c;我们是否能够自行建立一个小型的个人农场进行渲染呢&#xff1f;与云渲染农场相比&#xff0c;哪个更划算&#xff1f;更方便&#xff1f;接下来就带大家看看…

创意设计探索:8个推荐的高水平设计灵感网站

对于任何设计爱好者来说,浏览优质的设计网站无疑是激发创意、汲取灵感的重要途径之一。今天,小编精心为大家推荐了8个设计网站,无论你的设计方向是平面设计、包装设计、插画设计还是网页设计,这里都能帮你找到创作的灵感! 1.即时设计资源广场 即时设计是一款功能强大的云端设…

奈奎斯特-香农采样定理的理解(结合cos(8.5t)和傅里叶变换)

采样定理&#xff0c;通常被称为奈奎斯特-香农采样定理&#xff0c;是信号处理中的一个基本原则。它解释了如何从连续信号中采样以便在后续能完全重构原始信号。以下是该定理的核心要点&#xff1a; 采样定理的陈述&#xff1a;为了从其样本中无失真地重构一个连续时间信号&am…

Django框架完成读者浏览书籍,图书详情页,借阅管理

前情回顾&#xff1a; 使用Django框架实现简单的图书借阅系统——完成图书信息管理 文章目录 1.完成展示图书信息功能1.1django 静态资源管理问题1.2编写图书展示模板HTML 2.完成图书详情页功能2.1从后端获取图书详情信息2.2详情页面展示图书数据 3.完成借阅管理功能3.1管理员…

MIinW-W64交叉编译找不到‘mutex‘问题解决

问题 在linux下安装mingw-w64来交叉编译Windows的程序和库. 就像我之前的一篇博客提到的来进行mingw的交叉编译 这样默认安装的线程模型是win32模型.这个线程模型不支持mutex. 一般查找问题的过程: 线程模型通常包含互斥锁&#xff08;mutex&#xff09;作为线程同步的基本工…

开源对象存储服务器MinIO本地部署并结合内网穿透实现远程访问管理界面

文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器&#xff0c;可以在各种环境中运行&#xff0c;例如本地、Docker容器、Kubernetes集群等。它兼…

网页测试遇到自动弹窗,Alert类无法处理?或许你该来学学这招了!

相信大家在使用selenium做网页自动化时&#xff0c;会遇到如下这样的一个场景&#xff1a; 在你使用get访问某一个网址时&#xff0c;会在页面中弹出如上图所示的弹出框。 首先想到是利用Alert类来处理它。 然而&#xff0c;很不幸&#xff0c;Alert类处理的结果就是没有结果…

C语言——小细节和小知识9

一、大小端字节序 1、介绍 在计算机系统中&#xff0c;大小端&#xff08;Endianness&#xff09;是指多字节数据的存储和读取顺序。它是数据在内存中如何排列的问题&#xff0c;特别是与字节顺序相关。C语言中的数据存储大小端字节序指的是在内存中存储的多字节数据类型&…

MyBatis-Plus 入门指南:安装与配置、代码生成、综合案例、主键生成策略、自动填充

目录 1.MyBatis-Plus介绍 1.1.简介 1.2.特性 1.3.结构 1.4.支持数据库 2.快速开始 3.安装与配置 4.代码生成 5.综合案例 5.1.主键生成策略 5.2.自动填充 1.MyBatis-Plus介绍 1.1.简介 MyBatis-Plus&#xff08;简称 MP&#xff09;是一个 MyBatis 的增强工具&…

fastadmin答题考试系统开源二次开发带拍照搜题版本

应用介绍 应用介绍 一款基于FastAdminThinkPHPUniapp开发的小程序答题考试系统&#xff0c;提供全部前后台无加密源代码&#xff0c;支持私有化部署 前端截图&#xff1a; 后台截图&#xff1a; 功能介绍&#xff1a;