[牛客周赛复盘] 牛客周赛 Round 28 20240114
- 总结
- A\B
- 1. 题目描述
- 2. 思路分析
- 3. 代码实现
- 小红的炸砖块
- 1. 题目描述
- 2. 思路分析
- 3. 代码实现
- 小红统计区间(easy)
- 1. 题目描述
- 2. 思路分析
- 3. 代码实现
- 小红的好数组
- 1. 题目描述
- 2. 思路分析
- 3. 代码实现
- 小红统计区间(hard)
- 1. 题目描述
- 2. 思路分析
- 3. 代码实现
- 六、参考链接
总结
- 这周据说难度对标abc,根本扯淡。。
- E比较有难度,D赛中没想出来正数有啥用,直接前缀和莽F交了。
- A 模拟
- B 模拟
- C 模拟
- D 滑窗
- E 数学找规律
- F 前缀和+有序集合
A\B
链接: 小红的新周赛
链接: 小红的字符串
1. 题目描述
2. 思路分析
- 按题意模拟。
3. 代码实现
def solve():
print(sum(RI()))
def solve():
s, = RS()
ans = []
for i in range(len(s)-1):
ans.append(s[i:i+2])
ans.sort()
print(*ans,sep='\n')
小红的炸砖块
链接: 小红的炸砖块
1. 题目描述
2. 思路分析
- 用一个长为列宽的数组a记录每列当前最高砖块的行坐标即可。
- 炸x,y的时候可以判断a[y]<=x,即y列的x位置是否有砖块。
3. 代码实现
def solve():
m,n,k = RI()
a = [0]*n
for _ in range(k):
x,y = RI()
x -= 1
y -= 1
if a[y] <= x:
a[y] += 1
for i in range(m):
ans = ['.']*n
for j in range(n):
if a[j] <= i:
ans[j] = '*'
print(*ans,sep='')
小红统计区间(easy)
链接: 小红统计区间(easy)
1. 题目描述
2. 思路分析
- 全是正数,那么可以滑窗,复杂度O(n)
- 维护[j,i]区间,使这个区间和恰好不到k,那么j向左一下就能到k,所以把所有j(窗首)加起来即可。
- 注意由于这个窗可能为空,所以双指针写法比队列方便。
3. 代码实现
# ms
def solve2():
n, k = RI()
a = RILST()
s = ans = 0
q = deque()
for i, v in enumerate(a):
q.append(i)
s += v
while q and s >= k:
s -= a[q.popleft()]
ans += q[0] if q else i + 1
print(ans)
def solve():
n, k = RI()
a = RILST()
j = s = ans = 0
for i, v in enumerate(a):
s += v
while j <= i and s >= k:
s -= a[j]
j += 1
ans += j
print(ans)
小红的好数组
链接: 小红的好数组
1. 题目描述
2. 思路分析
- 长为三的子段和全是偶数的话,显然可以所有数据全填偶数。而1~k里一共m=k//2个偶数,每个位置填任意偶数是独立的。显然方案数是pow(m,n)。
- 同理,在这些位置中选一些奇数,每个位置有x=k-m个奇数,也是独立事件。只需讨论一下奇数偶数的位置和个数即可。
- 在纸上画了一下,发现合法好数组一定是121 121 121 …(这里12代表奇数偶数) 三个一循环的数,且可以从中任意位置截取。
- 即开始位置共有三种:[1]21121121…;[2]11211211…;[1]12112112…。
- 分别讨论这三种,然后计算1和2的数量即可,这里我只计算2的数量m(因为每个循环节里只有1个2),取个模分类讨论即可。那么1的数量就是n-m。
3. 代码实现
def solve():
n, k = RI()
a, b = k // 2, (k + 1) // 2 # 1~k的偶数个数,奇数个数
# 121 121 121 三个一循环
ans = pow(a, n, MOD) # 全填偶数
x, y = divmod(n, 3)
# 121开头
two = x + int(y >= 2)
ans += pow(a, two, MOD) * pow(b, n - two, MOD) % MOD
# 211开头
two = x + int(y >= 1)
ans += pow(a, two, MOD) * pow(b, n - two, MOD) % MOD
# 112开头
two = x
ans += pow(a, two, MOD) * pow(b, n - two, MOD) % MOD
print(ans % MOD)
小红统计区间(hard)
链接: 小红统计区间(hard)
1. 题目描述
2. 思路分析
- 看到字段和,首先想到前缀和。s[i…j] = pre[j+1]-pre[i] (pre前补0)
- 那么对于每个j,其实就是找前边满足<=pre[j+1]-k的数量,这可以用有序集合二分来解决。
3. 代码实现
class CuteSortedList:
def __init__(self, iterable=[], _load=200):
"""Initialize sorted list instance."""
values = sorted(iterable)
self._len = _len = len(values)
self._load = _load
self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)]
self._list_lens = [len(_list) for _list in _lists]
self._mins = [_list[0] for _list in _lists]
self._fen_tree = []
self._rebuild = True
def _fen_build(self):
"""Build a fenwick tree instance."""
self._fen_tree[:] = self._list_lens
_fen_tree = self._fen_tree
for i in range(len(_fen_tree)):
if i | i + 1 < len(_fen_tree):
_fen_tree[i | i + 1] += _fen_tree[i]
self._rebuild = False
def _fen_update(self, index, value):
"""Update `fen_tree[index] += value`."""
if not self._rebuild:
_fen_tree = self._fen_tree
while index < len(_fen_tree):
_fen_tree[index] += value
index |= index + 1
def _fen_query(self, end):
"""Return `sum(_fen_tree[:end])`."""
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
x = 0
while end:
x += _fen_tree[end - 1]
end &= end - 1
return x
def _fen_findkth(self, k):
"""Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`)."""
_list_lens = self._list_lens
if k < _list_lens[0]:
return 0, k
if k >= self._len - _list_lens[-1]:
return len(_list_lens) - 1, k + _list_lens[-1] - self._len
if self._rebuild:
self._fen_build()
_fen_tree = self._fen_tree
idx = -1
for d in reversed(range(len(_fen_tree).bit_length())):
right_idx = idx + (1 << d)
if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]:
idx = right_idx
k -= _fen_tree[idx]
return idx + 1, k
def _delete(self, pos, idx):
"""Delete value at the given `(pos, idx)`."""
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len -= 1
self._fen_update(pos, -1)
del _lists[pos][idx]
_list_lens[pos] -= 1
if _list_lens[pos]:
_mins[pos] = _lists[pos][0]
else:
del _lists[pos]
del _list_lens[pos]
del _mins[pos]
self._rebuild = True
def _loc_left(self, value):
"""Return an index pair that corresponds to the first position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
lo, pos = -1, len(_lists) - 1
while lo + 1 < pos:
mi = (lo + pos) >> 1
if value <= _mins[mi]:
pos = mi
else:
lo = mi
if pos and value <= _lists[pos - 1][-1]:
pos -= 1
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value <= _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def _loc_right(self, value):
"""Return an index pair that corresponds to the last position of `value` in the sorted list."""
if not self._len:
return 0, 0
_lists = self._lists
_mins = self._mins
pos, hi = 0, len(_lists)
while pos + 1 < hi:
mi = (pos + hi) >> 1
if value < _mins[mi]:
hi = mi
else:
pos = mi
_list = _lists[pos]
lo, idx = -1, len(_list)
while lo + 1 < idx:
mi = (lo + idx) >> 1
if value < _list[mi]:
idx = mi
else:
lo = mi
return pos, idx
def add(self, value):
"""Add `value` to sorted list."""
_load = self._load
_lists = self._lists
_mins = self._mins
_list_lens = self._list_lens
self._len += 1
if _lists:
pos, idx = self._loc_right(value)
self._fen_update(pos, 1)
_list = _lists[pos]
_list.insert(idx, value)
_list_lens[pos] += 1
_mins[pos] = _list[0]
if _load + _load < len(_list):
_lists.insert(pos + 1, _list[_load:])
_list_lens.insert(pos + 1, len(_list) - _load)
_mins.insert(pos + 1, _list[_load])
_list_lens[pos] = _load
del _list[_load:]
self._rebuild = True
else:
_lists.append([value])
_mins.append(value)
_list_lens.append(1)
self._rebuild = True
def discard(self, value):
"""Remove `value` from sorted list if it is a member."""
_lists = self._lists
if _lists:
pos, idx = self._loc_right(value)
if idx and _lists[pos][idx - 1] == value:
self._delete(pos, idx - 1)
def remove(self, value):
"""Remove `value` from sorted list; `value` must be a member."""
_len = self._len
self.discard(value)
if _len == self._len:
raise ValueError('{0!r} not in list'.format(value))
def pop(self, index=-1):
"""Remove and return value at `index` in sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
value = self._lists[pos][idx]
self._delete(pos, idx)
return value
def bisect_left(self, value):
"""Return the first index to insert `value` in the sorted list."""
pos, idx = self._loc_left(value)
return self._fen_query(pos) + idx
def bisect_right(self, value):
"""Return the last index to insert `value` in the sorted list."""
pos, idx = self._loc_right(value)
return self._fen_query(pos) + idx
def count(self, value):
"""Return number of occurrences of `value` in the sorted list."""
return self.bisect_right(value) - self.bisect_left(value)
def __len__(self):
"""Return the size of the sorted list."""
return self._len
# def __getitem__(self, index):
# """Lookup value at `index` in sorted list."""
# pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
# return self._lists[pos][idx]
def __getitem__(self, index):
"""Lookup value at `index` in sorted list."""
if isinstance(index, slice):
_lists = self._lists
start, stop, step = index.indices(self._len)
if step == 1 and start < stop: # 如果是正向的步进1,找到起起止点,然后把中间的拼接起来即可
if start == 0 and stop == self._len: # 全部
return reduce(iadd, self._lists, [])
start_pos, start_idx = self._fen_findkth(start)
start_list = _lists[start_pos]
stop_idx = start_idx + stop - start
# Small slice optimization: start index and stop index are
# within the start list.
if len(start_list) >= stop_idx:
return start_list[start_idx:stop_idx]
if stop == self._len:
stop_pos = len(_lists) - 1
stop_idx = len(_lists[stop_pos])
else:
stop_pos, stop_idx = self._fen_findkth(stop)
prefix = _lists[start_pos][start_idx:]
middle = _lists[(start_pos + 1):stop_pos]
result = reduce(iadd, middle, prefix)
result += _lists[stop_pos][:stop_idx]
return result
if step == -1 and start > stop: # 如果是负向的步进1,直接翻转调用自己再翻转即可
result = self.__getitem__(slice(stop + 1, start + 1))
result.reverse()
return result
indices = range(start, stop, step) # 若不是步进1,只好一个一个取
return list(self.__getitem__(index) for index in indices)
else:
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
return self._lists[pos][idx]
def __delitem__(self, index):
"""Remove value at `index` from sorted list."""
pos, idx = self._fen_findkth(self._len + index if index < 0 else index)
self._delete(pos, idx)
def __contains__(self, value):
"""Return true if `value` is an element of the sorted list."""
_lists = self._lists
if _lists:
pos, idx = self._loc_left(value)
return idx < len(_lists[pos]) and _lists[pos][idx] == value
return False
def __iter__(self):
"""Return an iterator over the sorted list."""
return (value for _list in self._lists for value in _list)
def __reversed__(self):
"""Return a reverse iterator over the sorted list."""
return (value for _list in reversed(self._lists) for value in reversed(_list))
def __repr__(self):
"""Return string representation of sorted list."""
return 'SortedList({0})'.format(list(self))
# ms
def solve():
n, k = RI()
a = RILST()
s = ans = 0
"""
y-x>=k
x <= y-k
"""
sl = CuteSortedList([0])
for v in a:
s += v
# print(s,sl)
ans += sl.bisect_right(s-k)
sl.add(s)
print(ans)
六、参考链接
- 无