NLP论文阅读记录 - 2021 | WOS 抽象文本摘要:使用词义消歧和语义内容泛化增强序列到序列模型

news2025/1/20 2:02:32

文章目录

  • 前言
  • 0、论文摘要
  • 一、Introduction
  • 二.前提
  • 三.本文方法
    • 3.1 总结为两阶段学习
      • 3.1.1 基础系统
    • 3.2 重构文本摘要
  • 四 实验效果
    • 4.1数据集
    • 4.2 对比模型
    • 4.3实施细节
    • 4.4评估指标
    • 4.5 实验结果
      • 4.6 细粒度分析
  • 五 总结
  • 思考


前言

在这里插入图片描述

Abstractive Text Summarization: Enhancing Sequence-to-Sequence Models Using Word Sense Disambiguation and Semantic Content Generalization(21)

0、论文摘要

如今,大多数在抽象文本摘要领域进行的研究都只关注基于神经的模型,而没有考虑将其与基于知识的方法相结合以进一步提高其效率。在这个方向上,这项工作提出了一种新颖的框架,它将基于序列到序列的神经文本摘要与基于结构和语义的方法相结合。所提出的框架能够处理词汇外或罕见词的问题,提高深度学习模型的性能。整体方法基于基于知识的内容概括和深度学习预测的明确理论模型,用于生成抽象摘要。该框架由三个关键要素组成:(i) 预处理任务,(ii) 机器学习方法,以及 (iii) 后处理任务。预处理任务是一种基于知识的方法,基于本体知识资源、词义消歧、命名实体识别以及内容概括,将普通文本转换为概括形式。一种专注编码器-解码器架构的深度学习模型,扩展以实现应对和覆盖机制,以及强化学习和基于变压器的架构,在文本摘要对的通用版本上进行训练,学习以通用形式预测摘要。后处理任务利用知识资源、词嵌入、词义消歧和基于文本相似性方法的启发式算法,以便将预测摘要的广义版本转换为最终的、人类可读的形式。对三个流行数据集进行的广泛实验过程评估了所提出框架的关键方面,而获得的结果表现出有希望的性能,验证了所提出方法的稳健性。

一、Introduction

大量且不断增长的在线文本信息使其访问成为一项具有挑战性的任务,因此,增加了以自动化方式摄取文本信息的必要性。实现这一目标的主要方法之一是通过数据缩减技术将一段文本转换为简洁的摘要。文本摘要(TS),这个过程更正式地被称为,半个多世纪以来一直是一个活跃的研究领域(Gambhir 和 Gupta 2017)。自动 TS 的主要目标是生成内容丰富且人类可读的文档摘要,并保留其显着内容。自从自动 TS 领域的早期工作出现以来(Luhn 1958;Edmundson 1969),已经提出了几种方法和系统,主要分为单文档 TS(例如文章、新闻、故事、书籍、科学论文或天气预报)、多文档 TS(例如,用户评论、来自多个来源的新闻或电子邮件)和基于查询的 TS(即关注文本中的特定信息)(Nenkova 和 McKeown 2012)。
此外,自动 TS 技术进一步大致分为两类: (i) 提取 TS 和 (ii) 抽象 TS(Yao、Wan 和 Xiao,2017 年;Allahyari 等人,2017 年)。前者旨在通过从原始文本中提取包含重要信息方面的句子子集来创建摘要,从而最大限度地减少冗余。后者旨在构建原始文本的抽象表示,使用自然语言生成来生成摘要。换句话说,抽象 TS 系统会生成新文本,其中包含最初可能未出现的表达、句子或单词,同时包含初始文档的整体含义。摘要 TS 旨在生成具有内聚性、可读性和冗余性的高质量摘要。因此,这是一项具有挑战性的任务,因为它生成的摘要类似于或近似于人类编写的摘要。
一般来说,与提取 TS 相比,抽象 TS 方法的性能较差(Gambhir 和 Gupta 2017;Joshi、Fern ́ andez 和 Alegre 2018)。尽管如此,尽管存在缺陷,抽象 TS 系统仍在不断改进。它们的主要优点是能够解决内聚、冗余和悬空照应等问题,这些问题很难用提取技术来解决。此外,抽象 TS 方法可以生成简洁的摘要,减少原始句子的大小(即应用句子压缩或句子合并),同时生成连贯、语法正确且可读的摘要。影响抽象 TS 的问题之一是词汇外 (OOV) 或罕见单词。这个问题具有很强的负面影响,特别是对于机器学习系统,它需要足够的使用示例的训练集来进行有效的预测。此外,在抽象 TS 中实现最先进性能的深度学习系统(Gupta 和 Gupta 2019)在接收新的数据时几乎总是无法做出准确的预测。
具有罕见或未见过的单词的实例(即,很少出现的单词或未包含在训练集中的单词)。从这个意义上说,我们的工作旨在提供一种处理此类单词的解决方案,以帮助基于神经的抽象 TS。
特别是,这项工作侧重于单个文档的抽象 TS,提出了一种利用基于知识的词义消歧(WSD)和语义内容泛化的新颖框架,以增强基于序列到序列(seq2seq)神经的 TS 的性能。该框架的主要贡献是结合了抽象 TS 的三个主要方面的特征,更具体地说,是结构、语义和基于神经的方法(Gupta 和 Gupta 2019)的特征的组合,这些特征在相关领域中主要被视为独立的方法。文献(第 2 节),尤其是深度学习方法方面的文献。另一方面,所提出的框架试图通过机器学习和基于知识的技术的结合使用来统一它们。
在这个方向上,所提出的方法由三个不同的步骤组成,用于生成最终摘要; (i) 预处理任务,(ii) 机器学习方法,以及 (iii) 后处理任务。第一步通过利用基于知识的语义本体和命名实体识别(NER)来实现文本泛化,以便从原始文档中提取命名实体、概念和含义。随后,将广义文本提供给专注编码器-解码器架构的 seq2seq 深度学习模型,该模型学习预测摘要的广义版本。特别是,研究了深度学习模型的五个变体:(i)具有注意机制的 seq2seq 模型,(ii)指针生成器网络,(iii)强化学习模型,(iv)变压器方法,以及( v) 预训练的编码器变压器架构(第 5 节)。最后,后处理任务基于启发式算法和将广义摘要的概念与特定概念相匹配的文本相似性度量来创建最终摘要。在三个广泛使用的数据集(Gigaword [Napoles, Gormley, and Van Durme 2012]、Duc 2004 [Over, Dang, and Harman 2007] 和 CNN/DailyMail [Hermann et al. 2015])上进行的广泛实验程序产生了有希望的结果结果,缓解了稀有词和 OOV 词的问题,并超越了最先进的 seq2seq 深度学习技术。
本文的其余部分组织如下:第 2 节概述了相关文献。第 3 节概述了拟议的框架,第 4 节(预处理任务)、第 5 节(机器学习方法)和第 6 节(后处理任务)对此进行了进一步分析。第 7 节描述了实验过程,第 8 节介绍了获得的结果,这些结果将在第 9 节中讨论。最后,第 10 节总结了这项工作,并提出了一些最后的评论和未来的工作方向。

二.前提

三.本文方法

3.1 总结为两阶段学习

3.1.1 基础系统

3.2 重构文本摘要

四 实验效果

4.1数据集

4.2 对比模型

4.3实施细节

4.4评估指标

4.5 实验结果

在这里插入图片描述

4.6 细粒度分析


五 总结

思考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1384583.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【CSS】保持元素宽高比

保持元素的宽高比,在视频或图片展示类页面是一个重要功能。 本文介绍其常规的实现方法。 实现效果 当浏览器视口发生变化时,元素的尺寸随之变化,且宽高比不变。 代码实现 我们用最简单的元素结构来演示,实现宽高比为4&#xf…

AI大模型学习笔记二

文章目录 一、Prompt Engineering1)环境准备 二、LangChain(一个框架名字)三、Fine-tuning(微调) 一、Prompt Engineering 1)环境准备 ①安装OpenAI库 pip install --upgrade openai附加 安装来源 pyth…

中职组安全-win20230217-环境-解析

*任务说明: 仅能获取win20230217的IP地址 用户名:test,密码:123456 访问服务器主机,找到主机中管理员名称,将管理员名称作为Flag值提交; john 访问服务器主机,找到主机中补丁信息,将补丁编号作为Flag值提交&#xff…

NLP论文阅读记录 - 2022 | WOS 一种新颖的优化的与语言无关的文本摘要技术

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.前提三.本文方法四 实验效果4.1数据集4.2 对比模型4.3实施细节4.4评估指标4.5 实验结果4.6 细粒度分析 五 总结思考 前言 A Novel Optimized Language-Independent Text Summarization Techni…

【OJ】环形链表

目录 1. 环形链表||(142)1.1 题目描述1.2 题目分析1.3 代码 2. 环形链表(141)2.1 题目描述2.2 题目分析2.3 代码 1. 环形链表||(142) 1.1 题目描述 1.2 题目分析 带环链表:尾节点的next指向链…

QLExpress和Groovy对比

原理 Groovy groovy基于JVM运行。 编译时:将源文件编译成class文件后,用java的classLoader加载;运行时:直接用groovy classLoader加载 QLExpress QLExpress将文本解析成AST,用java对象表达后执行。 特点 Groo…

【JaveWeb教程】(27)Mybatis的XML配置文件与Mybatis动态SQL 详细代码示例讲解

目录 2. Mybatis的XML配置文件2.1 XML配置文件规范2.2 XML配置文件实现2.3 MybatisX的使用 3. Mybatis动态SQL3.1 什么是动态SQL3.2 动态SQL-if3.2.1 条件查询3.2.2 更新员工 3.3 动态SQL-foreach3.4 动态SQL-sql&include 2. Mybatis的XML配置文件 Mybatis的开发有两种方式…

基于ssm的理财通的设计与实现+jsp论文

摘 要 在如今社会上,关于信息上面的处理,没有任何一个企业或者个人会忽视,如何让信息急速传递,并且归档储存查询,采用之前的纸张记录模式已经不符合当前使用要求了。所以,对理财信息管理的提升&#xff0c…

DeepFloyd IF:由文本生成图像的强大模型,能够绘制文字的 AI 图像工具

文章目录 一、DeepFloyd IF 简介二、DeepFloyd IF模型架构三、DeepFloyd IF模型生成流程四、DeepFloyd IF 模型定义 一、DeepFloyd IF 简介 DeepFloyd IF:能够绘制文字的 AI 图像工具 之前的 Stable Diffusion 和 Midjourney 都无法生成带有文字的图片,…

09Bean的生命周期/作用域不同管理方式不同/自己new的对象纳入Spring容器管理

Spring其实就是一个管理Bean对象的工厂。它负责对象的创建,对象的销毁等。 所谓的生命周期就是:对象从创建开始到最终销毁的整个过程。 Bean的生命周期之5步 ● 第一步:实例化Bean(无参构造方法执行) ● 第二步:Bean属性赋值(注…

python的库或函数不会用:使用help函数查看函数

help(time) # 查看time这个库 FUNCTIONS #函数;都可以调用asctime(...)asctime([tuple]) -> string #调用这个函数的参数需要一个元组(tuple),->:代表返回值是string类型的#下面是简单的介绍Convert a time tup…

强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码)

一、Q-learning算法简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每…

LDR伪指令和ADR指令的区别

关于 ldr x5, lable 与 adr x5, label 首先,看ARM官方的手册: 对于 ADR 指令: 看 Operation 即可看出作用,Xd 赋值为 $PC imm 要求 label 和 $PC 位置在 正负1MB的范围内(这个数值和上面提到的imm有关)…

【2023 我的编程之旅】

前言 转眼 2024 年都过去 14 天了。回顾 2023 有太多技术上的思考以及人生的感悟,接下来趁着 CSDN 官方活动,顺便记录下来。 技术的价值 与现在的年轻人一心只想搞钱不同,刚毕业的时候,我的梦想是进入一家有实力的科技企业&…

光鉴科技的反卷思维,让科技不再难做

文 | 智能相对论 作者 | 陈壹 中国企业的全球竞争力,正从“拼人力、拼产能”转为“拼技术、拼创新”的新阶段。据世界知识产权组织发布的《世界知识产权指标报告》显示,2022年中国专利申请量约160万件,排名世界第一。而在最近发布的全球百强…

【GitHub项目推荐--AI 开源项目/涵盖 OCR、人脸检测、NLP、语音合成多方向】【转载】

今天为大家推荐一个相当牛逼的AI开源项目,当前 Star 3.4k,但是大胆预判,这个项目肯定要火,未来 Star 数应该可以到 10k 甚至 20k! 着急的,可以到 GitHub 直接去看源码 传送门:https://github.c…

02 时间复杂度和空间复杂度

目录 算法效率时间复杂度空间复杂度练习 1. 算法效率 1.1 如何衡量一个算法的好坏 比如裴波那切数列: long long Fib (int N) { if (N < 3) return 1 ; return Fib(N-1) Fib(N -2) ; } 它的递归方式很简洁&#xff0c;但一定好吗&#xff1f;怎么衡量算法的好坏&#xf…

FFmpeg技术详解

FFmpeg技术详解 本文概不介绍相关安装配置&#xff0c;详情请入官方或者其他大佬博客&#xff0c;此处做出推荐&#xff1a; https://ffmpeg.org/ FFmpeg官网 https://ffmpeg.github.net.cn/developer.html FFmpeg中文文档 https://blog.csdn.net/m0_47449768/article/details/…

Python之字符串中常用的方法

1. 去掉空格和特殊符号 name " abcdefgeyameng " name1 name.strip() # 并不会在原来的字符串上操作,返回一个去除了两边空白的字符串 print(name1, len(name1), name, len(name)) # abcdefgeyameng 14 abcdefgeyameng 17 # 去掉左边的空格和换行符 name2 n…

信息收集之子域名收集

渗透测试常见手法和思维 信息收集 简述 信息收集对于渗透测试前期来说是非常重要的&#xff0c;因为只有我们掌握了目标网站或目标主机足够多的信息之后&#xff0c;我们才能更好地对其进行漏洞检测。正所谓&#xff0c;知己知彼百战百胜&#xff01; 信息收集的方式可以分…