NLP论文阅读记录 - 2022 | WOS 一种新颖的优化的与语言无关的文本摘要技术

news2025/1/20 3:45:03

文章目录

  • 前言
  • 0、论文摘要
  • 一、Introduction
    • 1.1目标问题
    • 1.2相关的尝试
    • 1.3本文贡献
  • 二.前提
  • 三.本文方法
  • 四 实验效果
    • 4.1数据集
    • 4.2 对比模型
    • 4.3实施细节
    • 4.4评估指标
    • 4.5 实验结果
      • 4.6 细粒度分析
  • 五 总结
  • 思考


前言

在这里插入图片描述

A Novel Optimized Language-Independent Text Summarization Technique(2204)

0、论文摘要

大量文本数据以多种语言以电子方式呈现。这些文本将齿轮导向信息冗余。消除这种冗余并减少这些数据的读取时间至关重要。因此,我们需要一种计算机化的文本摘要技术来从具有相关主题的文本文档组中提取相关信息。
本文提出了一种与语言无关的提取摘要技术。所提出的技术提出了一种基于聚类的优化技术。聚类技术确定文本的主要主题,而所提出的优化技术则最大限度地减少冗余并最大化重要性。
使用英语的 BillSum 数据集、德语和俄语的 MLSUM 以及阿拉伯语的 Mawdoo3 来设计和评估实验。使用 ROUGE 指标评估实验。结果表明,与其他依赖于语言和独立于语言的摘要技术相比,所提出的技术是有效的。我们的技术为所有使用的数据集实现了更好的 ROUGE 指标。
对于使用所有三个目标的所有数据集,该技术平均实现了 Rouge-1 41.9%、Rouge-2 18.7%、Rouge-3 39.4% 和 Rouge-4 16.8% 的 F 测量。我们的系统还表现出 26.6%、35.5%、34.65% 和 31.54% w.r.t. 的改进。最近的模型在 ROUGE 度量评估方面对 BillSum 的总结做出了贡献。我们的模型的性能高于对比模型,特别是在二元匹配的 ROUGE_2 的度量结果中。

一、Introduction

1.1目标问题

大量不同语言的电子数据增加了从中挖掘有用信息的难度。人们很难阅读如此庞大的文章信息。因此,有必要采用计算机化的摘要技术来推断重要的内容。并迅速突出信息。计算机摘要技术已应用于不同领域,例如网页和在线表格。例如,[1] 中的作者建议使用文本标记提取来改善搜索结果。 [2] 中的作者提出了一种用于媒体分析的文本标记提取方法。与语言无关的摘要提取器是语言分析应用程序。它们的目标是从单个或多文本文档生成较短的文本,同时保持含义。摘要技术可以根据输入、语言、方法或输出进行分类,如图 1 所示[3,4]。可以对单个文本文档或多文本文档的输入进行摘要。在多文本文档摘要中使用一组相关的文本文档。单文本文档源不会显示不一致,但是,在多文本文档源中可能会发现冲突和冗余。因此,多文本文档源摘要比单源文本文档更困难[3-5]。此外,摘要输出可以是非特定的,讨论一个巨大的社区,也可以是基于文本标记的,强调与文本标记相关的特定主题。这对于将该技术分类为指示性过程非常重要[3,4]。
摘要过程也可以定义为提取式,其中摘要输出是通过根据语言特征和统计方面选择主要短语来生成基于加权和的解决方案[3-8]。而摘要依赖于使用自然语言处理技术分析文本语义来生成掌握源文本文档中主要思想的新短语[3,4]。摘要概要更易于理解,类似于人类所做的摘要,但它们需要对源文本有深刻的了解,并且还需要解析器和文本生成器[6,7]。深度学习和迁移学习可以用于抽象概括。深度学习通常可以产生良好的结果。提取摘要利用预定义的特征选择重要的短语。然后组合所选短语以产生摘要输出。在多文本文档中,由于从多个文本文档中挖掘短语,因此出现了冗余问题。在这种情况下必须处理冗余。此外,受限摘要需要选择最佳的摘要输出,而不是杰出的短语。因此,多文本文档摘要将导致全局优化需求[8-10]。

1.2相关的尝试

1.3本文贡献

总之,我们的贡献如下:
1.本文提出了一种与语言无关的提取摘要技术。
2.所提出的技术提出了一种基于聚类的优化技术。
3. 聚类技术确定文本的主要主题,而所提出的优化技术则最大限度地减少冗余并最大化重要性。
4. 针对不同语言设计并评估实验,以证明模型的独立特征。
5. 在英语、德语、俄语和阿拉伯语语言的数据集上进行实验。

二.前提

三.本文方法

四 实验效果

4.1数据集

4.2 对比模型

4.3实施细节

4.4评估指标

4.5 实验结果

4.6 细粒度分析


五 总结

总之,我们将多语言无关的文本摘要过程制定为目标优化过程(同时最大化多个目标)。该模型采用四个阶段:第一阶段是预处理过程,然后进行特征提取和聚类,最后一个阶段是多目标同时优化。通过标记化、停用词去除和规范化等预处理,以统一的形式对句子进行建模。选择统计特征并将其用于每个短语的重要性评分。相关文档的主题是使用质心聚类来定义的。最后一个阶段使用多目标优化进化方法生成最佳摘要,最大化重要性并最小化冗余。结果通过测量 ROUGE 指标验证了我们的模型相对于最先进模型的有效性。我们仍然有一些限制,如下:(i)句子分数是通过实验计算的,可以通过遗传算法计算,以及(ii)我们没有包括输出的一致性,我们可以将其包括到要优化的目标中。

思考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1384578.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【OJ】环形链表

目录 1. 环形链表||(142)1.1 题目描述1.2 题目分析1.3 代码 2. 环形链表(141)2.1 题目描述2.2 题目分析2.3 代码 1. 环形链表||(142) 1.1 题目描述 1.2 题目分析 带环链表:尾节点的next指向链…

QLExpress和Groovy对比

原理 Groovy groovy基于JVM运行。 编译时:将源文件编译成class文件后,用java的classLoader加载;运行时:直接用groovy classLoader加载 QLExpress QLExpress将文本解析成AST,用java对象表达后执行。 特点 Groo…

【JaveWeb教程】(27)Mybatis的XML配置文件与Mybatis动态SQL 详细代码示例讲解

目录 2. Mybatis的XML配置文件2.1 XML配置文件规范2.2 XML配置文件实现2.3 MybatisX的使用 3. Mybatis动态SQL3.1 什么是动态SQL3.2 动态SQL-if3.2.1 条件查询3.2.2 更新员工 3.3 动态SQL-foreach3.4 动态SQL-sql&include 2. Mybatis的XML配置文件 Mybatis的开发有两种方式…

基于ssm的理财通的设计与实现+jsp论文

摘 要 在如今社会上,关于信息上面的处理,没有任何一个企业或者个人会忽视,如何让信息急速传递,并且归档储存查询,采用之前的纸张记录模式已经不符合当前使用要求了。所以,对理财信息管理的提升&#xff0c…

DeepFloyd IF:由文本生成图像的强大模型,能够绘制文字的 AI 图像工具

文章目录 一、DeepFloyd IF 简介二、DeepFloyd IF模型架构三、DeepFloyd IF模型生成流程四、DeepFloyd IF 模型定义 一、DeepFloyd IF 简介 DeepFloyd IF:能够绘制文字的 AI 图像工具 之前的 Stable Diffusion 和 Midjourney 都无法生成带有文字的图片,…

09Bean的生命周期/作用域不同管理方式不同/自己new的对象纳入Spring容器管理

Spring其实就是一个管理Bean对象的工厂。它负责对象的创建,对象的销毁等。 所谓的生命周期就是:对象从创建开始到最终销毁的整个过程。 Bean的生命周期之5步 ● 第一步:实例化Bean(无参构造方法执行) ● 第二步:Bean属性赋值(注…

python的库或函数不会用:使用help函数查看函数

help(time) # 查看time这个库 FUNCTIONS #函数;都可以调用asctime(...)asctime([tuple]) -> string #调用这个函数的参数需要一个元组(tuple),->:代表返回值是string类型的#下面是简单的介绍Convert a time tup…

强化学习应用(六):基于Q-learning的物流配送路径规划研究(提供Python代码)

一、Q-learning算法简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每…

LDR伪指令和ADR指令的区别

关于 ldr x5, lable 与 adr x5, label 首先,看ARM官方的手册: 对于 ADR 指令: 看 Operation 即可看出作用,Xd 赋值为 $PC imm 要求 label 和 $PC 位置在 正负1MB的范围内(这个数值和上面提到的imm有关)…

【2023 我的编程之旅】

前言 转眼 2024 年都过去 14 天了。回顾 2023 有太多技术上的思考以及人生的感悟,接下来趁着 CSDN 官方活动,顺便记录下来。 技术的价值 与现在的年轻人一心只想搞钱不同,刚毕业的时候,我的梦想是进入一家有实力的科技企业&…

光鉴科技的反卷思维,让科技不再难做

文 | 智能相对论 作者 | 陈壹 中国企业的全球竞争力,正从“拼人力、拼产能”转为“拼技术、拼创新”的新阶段。据世界知识产权组织发布的《世界知识产权指标报告》显示,2022年中国专利申请量约160万件,排名世界第一。而在最近发布的全球百强…

【GitHub项目推荐--AI 开源项目/涵盖 OCR、人脸检测、NLP、语音合成多方向】【转载】

今天为大家推荐一个相当牛逼的AI开源项目,当前 Star 3.4k,但是大胆预判,这个项目肯定要火,未来 Star 数应该可以到 10k 甚至 20k! 着急的,可以到 GitHub 直接去看源码 传送门:https://github.c…

02 时间复杂度和空间复杂度

目录 算法效率时间复杂度空间复杂度练习 1. 算法效率 1.1 如何衡量一个算法的好坏 比如裴波那切数列: long long Fib (int N) { if (N < 3) return 1 ; return Fib(N-1) Fib(N -2) ; } 它的递归方式很简洁&#xff0c;但一定好吗&#xff1f;怎么衡量算法的好坏&#xf…

FFmpeg技术详解

FFmpeg技术详解 本文概不介绍相关安装配置&#xff0c;详情请入官方或者其他大佬博客&#xff0c;此处做出推荐&#xff1a; https://ffmpeg.org/ FFmpeg官网 https://ffmpeg.github.net.cn/developer.html FFmpeg中文文档 https://blog.csdn.net/m0_47449768/article/details/…

Python之字符串中常用的方法

1. 去掉空格和特殊符号 name " abcdefgeyameng " name1 name.strip() # 并不会在原来的字符串上操作,返回一个去除了两边空白的字符串 print(name1, len(name1), name, len(name)) # abcdefgeyameng 14 abcdefgeyameng 17 # 去掉左边的空格和换行符 name2 n…

信息收集之子域名收集

渗透测试常见手法和思维 信息收集 简述 信息收集对于渗透测试前期来说是非常重要的&#xff0c;因为只有我们掌握了目标网站或目标主机足够多的信息之后&#xff0c;我们才能更好地对其进行漏洞检测。正所谓&#xff0c;知己知彼百战百胜&#xff01; 信息收集的方式可以分…

Vue实战:两种方式创建Vue项目

文章目录 一、实战概述二、实战步骤&#xff08;一&#xff09;安装Vue CLI脚手架1、从Node.js官网下载LTS版本2、安装Node.js到指定目录3、配置Node.js环境变量4、查看node版本5、查看npm版本6、安装Vue Cli脚手架7、查看Vue Cli版本 &#xff08;二&#xff09;命令行方式构建…

libcurl开源库的编译与使用全攻略

libcurl简介 libcurl 是一个广泛使用的、支持多种协议的、开源的客户端URL传输库&#xff0c;提供了许多用于数据传输的API&#xff0c;例如文件传输、FTP、HTTP、HTTPS、SMTP等。libcurl 的主要特点包括 支持多种协议&#xff1a;libcurl 支持多种协议&#xff0c;如 HTTP、F…

【前后端的那些事】开源!前后端环境搭建+树形结构表格实现

文章目录 1. 前后端项目环境搭建2. table-tree2.1 后端准备2.2 前端准备 前言&#xff1a;最近写项目&#xff0c;发现了一些很有意思的功能&#xff0c;想写文章&#xff0c;录视频把这些内容记录下。但这些功能太零碎&#xff0c;如果为每个功能都单独搭建一个项目&#xff0…

spring cloud feign demo

1. 工程结构 2. 父工程pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.…