算法训练day13Leetcode144 145 94 二叉树的前(中)(后)序遍历

news2025/2/26 12:25:10

今日学习的文章和视频链接

https://www.bilibili.com/video/BV1Hy4y1t7ij/?vd_source=8272bd48fee17396a4a1746c256ab0ae
二叉树的种类
在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。

满二叉树

满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。

完全二叉树

什么是完全二叉树?

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。

在这里插入图片描述

二叉搜索树

前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。

若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树

平衡二叉搜索树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。

所以大家使用自己熟悉的编程语言写算法,一定要知道常用的容器底层都是如何实现的,最基本的就是map、set等等,否则自己写的代码,自己对其性能分析都分析不清楚!

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。

那么链式存储方式就用指针, 顺序存储的方式就是用数组。

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在各个地址的节点串联一起。

链式存储如图:

在这里插入图片描述

二叉树的遍历方式
关于二叉树的遍历方式,要知道二叉树遍历的基本方式都有哪些。

一些同学用做了很多二叉树的题目了,可能知道前中后序遍历,可能知道层序遍历,但是却没有框架。

我这里把二叉树的几种遍历方式列出来,大家就可以一一串起来了。

二叉树主要有两种遍历方式:

深度优先遍历:先往深走,遇到叶子节点再往回走。
广度优先遍历:一层一层的去遍历。
这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。

那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:

深度优先遍历
前序遍历(递归法,迭代法)
中序遍历(递归法,迭代法)
后序遍历(递归法,迭代法)
广度优先遍历
层次遍历(迭代法)
在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。

这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。

看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式

前序遍历:中左右
中序遍历:左中右
后序遍历:左右中
大家可以对着如下图,看看自己理解的前后中序有没有问题。

在这里插入图片描述

最后再说一说二叉树中深度优先和广度优先遍历实现方式,我们做二叉树相关题目,经常会使用递归的方式来实现深度优先遍历,也就是实现前中后序遍历,使用递归是比较方便的。

之前我们讲栈与队列的时候,就说过栈其实就是递归的一种实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用递归的方式来实现的。

而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。

这里其实我们又了解了栈与队列的一个应用场景了。

具体的实现我们后面都会讲的,这里大家先要清楚这些理论基础。

二叉树的定义

刚刚我们说过了二叉树有两种存储方式顺序存储,和链式存储,顺序存储就是用数组来存,这个定义没啥可说的,我们来看看链式存储的二叉树节点的定义方式。

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

大家会发现二叉树的定义 和链表是差不多的,相对于链表 ,二叉树的节点里多了一个指针, 有两个指针,指向左右孩子。

这里要提醒大家要注意二叉树节点定义的书写方式。

在现场面试的时候 面试官可能要求手写代码,所以数据结构的定义以及简单逻辑的代码一定要锻炼白纸写出来。

因为我们在刷leetcode的时候,节点的定义默认都定义好了,真到面试的时候,需要自己写节点定义的时候,有时候会一脸懵逼!

总结

二叉树是一种基础数据结构,在算法面试中都是常客,也是众多数据结构的基石。

本篇我们介绍了二叉树的种类、存储方式、遍历方式以及定义,比较全面的介绍了二叉树各个方面的重点,帮助大家扫一遍基础。

说到二叉树,就不得不说递归,很多同学对递归都是又熟悉又陌生,递归的代码一般很简短,但每次都是一看就会,一写就废。

二叉树的递归遍历

这里帮助大家确定下来递归算法的三个要素。每次写递归,都按照这三要素来写,可以保证大家写出正确的递归算法!

  1. 确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。

  2. 确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。

  3. 确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

以下以前序遍历为例:

确定递归函数的参数和返回值:因为要打印出前序遍历节点的数值,所以参数里需要传入vector来放节点的数值,除了这一点就不需要再处理什么数据了也不需要有返回值,所以递归函数返回类型就是void,代码如下:

void traversal(TreeNode* cur, vector<int>& vec)
确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return,代码如下:
if (cur == NULL) return;
确定单层递归的逻辑:前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
vec.push_back(cur->val);    // 中
traversal(cur->left, vec);  // 左
traversal(cur->right, vec); // 右
单层递归的逻辑就是按照中左右的顺序来处理的,这样二叉树的前序遍历,基本就写完了,再看一下完整代码:

144 145 94 二叉树的前(中)(后)序遍历

题目描述

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

我的acm模式代码

前序

#include <iostream>
#include <vector>

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int value):val(value), left(nullptr), right(nullptr) {}
    TreeNode(int value, TreeNode* left, TreeNode* right):val(value), left(left),right(right) {}

};

class Solution {
public:
    void Traversal (TreeNode* cur, std::vector<int>& vec) {
        if (cur == nullptr) {
            return;
        }
        vec.push_back(cur->val);
        Traversal(cur->left, vec);  
        Traversal(cur->right, vec);

        
    }
    std::vector<int> preorderTraversal(TreeNode* root) {
        std::vector<int> vec;
        Traversal(root, vec);
        return vec;

    }
};



int main() {
    // 创建节点
    TreeNode* node1 = new TreeNode(1);
    TreeNode* node2 = new TreeNode(2);
    TreeNode* node3 = new TreeNode(3);
    TreeNode* node4 = new TreeNode(4);
    TreeNode* node5 = new TreeNode(5);
    TreeNode* node6 = new TreeNode(6);
    TreeNode* node7 = new TreeNode(7);

    // 构建较复杂的二叉树
    //       1
    //      / \
    //     2   3
    //    /   / \
    //   4   5   6
    //        \
    //         7
    node1->left = node2;
    node1->right = node3;
    node2->left = node4;
    node3->left = node5;
    node3->right = node6;
    node5->right = node7;

    // 创建Solution实例并进行遍历
    Solution sol;
    std::vector<int> result = sol.preorderTraversal(node1);

    // 打印遍历结果
    std::cout << "Preorder Traversal: ";
    for (int val : result) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    // 清理分配的内存
    delete node1;
    delete node2;
    delete node3;
    delete node4;
    delete node5;
    delete node6;
    delete node7;

    return 0;
}

中序

#include <iostream>
#include <vector>

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int value):val(value), left(nullptr), right(nullptr) {}
    TreeNode(int value, TreeNode* left, TreeNode* right):val(value), left(left),right(right) {}

};

class Solution {
public:
    void Traversal (TreeNode* cur, std::vector<int>& vec) {
        if (cur == nullptr) {
            return;
        }
        Traversal(cur->left, vec);  
        Traversal(cur->right, vec);
        vec.push_back(cur->val);

        
    }
    std::vector<int> preorderTraversal(TreeNode* root) {
        std::vector<int> vec;
        Traversal(root, vec);
        return vec;

    }
};



int main() {
    // 创建节点
    TreeNode* node1 = new TreeNode(1);
    TreeNode* node2 = new TreeNode(2);
    TreeNode* node3 = new TreeNode(3);
    TreeNode* node4 = new TreeNode(4);
    TreeNode* node5 = new TreeNode(5);
    TreeNode* node6 = new TreeNode(6);
    TreeNode* node7 = new TreeNode(7);

    // 构建较复杂的二叉树
    //       1
    //      / \
    //     2   3
    //    /   / \
    //   4   5   6
    //        \
    //         7
    node1->left = node2;
    node1->right = node3;
    node2->left = node4;
    node3->left = node5;
    node3->right = node6;
    node5->right = node7;

    // 创建Solution实例并进行遍历
    Solution sol;
    std::vector<int> result = sol.preorderTraversal(node1);

    // 打印遍历结果
    std::cout << "Preorder Traversal: ";
    for (int val : result) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    // 清理分配的内存
    delete node1;
    delete node2;
    delete node3;
    delete node4;
    delete node5;
    delete node6;
    delete node7;

    return 0;
}

后序

#include <iostream>
#include <vector>

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int value):val(value), left(nullptr), right(nullptr) {}
    TreeNode(int value, TreeNode* left, TreeNode* right):val(value), left(left),right(right) {}

};

class Solution {
public:
    void Traversal (TreeNode* cur, std::vector<int>& vec) {
        if (cur == nullptr) {
            return;
        }
        Traversal(cur->left, vec);  
        vec.push_back(cur->val);
        Traversal(cur->right, vec);

        
    }
    std::vector<int> preorderTraversal(TreeNode* root) {
        std::vector<int> vec;
        Traversal(root, vec);
        return vec;

    }
};



int main() {
    // 创建节点
    TreeNode* node1 = new TreeNode(1);
    TreeNode* node2 = new TreeNode(2);
    TreeNode* node3 = new TreeNode(3);
    TreeNode* node4 = new TreeNode(4);
    TreeNode* node5 = new TreeNode(5);
    TreeNode* node6 = new TreeNode(6);
    TreeNode* node7 = new TreeNode(7);

    // 构建较复杂的二叉树
    //       1
    //      / \
    //     2   3
    //    /   / \
    //   4   5   6
    //        \
    //         7
    node1->left = node2;
    node1->right = node3;
    node2->left = node4;
    node3->left = node5;
    node3->right = node6;
    node5->right = node7;

    // 创建Solution实例并进行遍历
    Solution sol;
    std::vector<int> result = sol.preorderTraversal(node1);

    // 打印遍历结果
    std::cout << "Preorder Traversal: ";
    for (int val : result) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    // 清理分配的内存
    delete node1;
    delete node2;
    delete node3;
    delete node4;
    delete node5;
    delete node6;
    delete node7;

    return 0;
}

    std::vector<int> result = sol.preorderTraversal(node1);

    // 打印遍历结果
    std::cout << "Preorder Traversal: ";
    for (int val : result) {
        std::cout << val << " ";
    }
    std::cout << std::endl;

    // 清理分配的内存
    delete node1;
    delete node2;
    delete node3;
    delete node4;
    delete node5;
    delete node6;
    delete node7;

    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1382874.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

宝塔nginx部署前端页面刷新报404

问题&#xff1a; 当我们使用脚手架打包前端项目的时候&#xff0c;如果前端项目并没有静态化的配置&#xff0c;如以下 当我们刷新页面&#xff0c;或进行路由配置访问的时候就会报404的错误 原因&#xff1a; 这是因为通常我们做的vue项目属于单页面开发。所以只有index.html…

Abaqus汉化教程

用钢铁意志&#xff0c;成就不平凡人生。 今天博主整理了一下Abaqus2023汉化教程&#xff0c;希望大家学习。 第一步&#xff0c;在在菜单栏找到Abaqus CAE右键打开文件所在的位置 第二步&#xff1a;继续右键Abaqus CAE右键打开文件所在的位置 第三步&#xff1a;然后进入到…

PMP与NPDP证书:哪个更权威?哪个含金量更高?

&#x1f3af;PMP和NPDP都具有权威性&#xff0c;但它们在领域和目标人qun方面略有不同。 1️⃣PMP在项目管理领域有较高的国际认可度 &#x1f48e;PMP是由项目管理协会(PMI)颁发的项目管理专业认证&#xff0c;具有较高的国际认可度。 PMP证书持有者通常具备严谨的项目管理知…

银行储蓄系统的顶层数据流图及细化数据流图

绘制出银行储蓄系统的顶层数据流图及细化数据流图&#xff1b; 银行储蓄系统存、取款流程如下&#xff1a; 1&#xff09;业务员事先录入利率信息&#xff1b; 2&#xff09;如果是存款&#xff0c;储户填写存款单&#xff0c;业务员将存款单键入系统&#xff0c;系统更新储户存…

【MATLAB源码-第111期】基于matlab的SCMA系统误码率仿真,采用polar码编码,输出误码率曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 SCMA&#xff08;Sparse Code Multiple Access&#xff09;系统是一种先进的多用户多输入多输出&#xff08;MU-MIMO&#xff09;通信系统&#xff0c;它采用了一种独特的多址访问技术&#xff0c;旨在提高无线通信网络的效率…

[足式机器人]Part2 Dr. CAN学习笔记-Advanced控制理论 Ch04-7 LQR控制器 Linear Quadratic Regulator

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-Advanced控制理论 Ch04-7 LQR控制器 Linear Quadratic Regulator 线性控制器设计-轨迹跟踪&#xff08;Fellow a Desired Path&#xff09;

HCIA-Datacom题库(自己整理分类的)_09_Telnet协议【14道题】

一、单选 1.某公司网络管理员希望能够远程管理分支机构的网络设备&#xff0c;则下面哪个协议会被用到&#xff1f; RSTP CIDR Telnet VLSM 2.以下哪种远程登录方式最安全&#xff1f; Telnet Stelnet v100 Stelnet v2 Stelnet v1 解析&#xff1a; Telnet 明文传输…

一键调整播放倍速,调整播放倍速的软件

你是否曾因为长时间的视频而感到厌烦&#xff1f;或者因为视频播放得太快而错过了一些重要内容&#xff1f;现在&#xff0c;有了我们的【媒体梦工厂】&#xff0c;这些问题都将得到完美解决。不论你是想快速浏览长视频&#xff0c;还是想让视频慢下来以便更好地学习或欣赏&…

test-04-test case generate 测试用例生成 tcases 快速开始

拓展阅读 junit5 系列 基于 junit5 实现 junitperf 源码分析 Auto generate mock data for java test.(便于 Java 测试自动生成对象信息) Junit performance rely on junit5 and jdk8.(java 性能测试框架。性能测试。压测。测试报告生成。) 自动生成测试用例 入门指南 关于…

Error: error:0308010C:digital envelope routines::unsupported的解决方案

因为最近安装了pnpm对node版本有要求&#xff0c;升级了node版本是18以后&#xff0c;在运行之前的项目&#xff0c;就跑不起来了&#xff0c;报错如下&#xff1a; Error: error:0308010C:digital envelope routines::unsupported解决方案一&#xff1a; node版本切换到16版…

三、MySQL实例初始化、设置、服务启动关闭、环境变量配置、客户端登入(一篇足以从白走到黑)

目录 1、选择安装的电脑类型、设置端口号 2、选择mysql账号密码加密规则 3、设置root账户密码 4、设置mysql服务名和服务启动策略 5、执行设置&#xff08;初始化mysql实例&#xff09; 6、完成设置 7、MySQL数据库服务的启动和停止 方式一&#xff1a;图形化方式 方式…

MySQL-多表连接查询

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…

camtasia studio2024免费版如何下载?怎么录屏?

camtasia studio怎么录屏&#xff1f;Camtasia Studio是一款专门录制屏幕动作的工具&#xff0c;它能在任何颜色模式下轻松地记录屏幕动作&#xff0c;包括影像、音效、鼠标移动轨迹、解说声音等等。一般情况下&#xff0c;用户使用camtasia studio进行录屏时&#xff0c;需要注…

基于协同过滤的零食推荐系统

介绍 协同过滤算法&#xff1a;协同过滤是推荐系统中比较常用的算法之一&#xff0c;其核心思想是寻找用户之间的相似性&#xff0c;通过发现用户之间的共性&#xff0c;向用户推荐可能喜欢的商品或服务。Python Django Vue&#xff1a;Django 是一个基于 Python 的 Web 开发框…

【学术精选】NLP可投的顶会信息(近期截稿)

顶级会议推荐 引言 国际学术会议是一种学术影响度较高的会议&#xff0c;它具有国际性、权威性、高知识性、高互动性等特点&#xff0c;其参会者一般为科学家、学者、教师等。具有高学历的研究人员把它作为一种科研学术的交流方式&#xff0c;能够为科研成果的发表和对科研学术…

《工具录》fierce

工具录 1&#xff1a;fierce2&#xff1a;选项介绍3&#xff1a;示例 本文以 kali-linux-2023.3-vmware-amd64 为例。 1&#xff1a;fierce fierce 是开源的网络安全工具&#xff0c;用于进行域名扫描和子域名枚举。 官方网址&#xff1a;https://github.com/mschwager/fierc…

引领行业赛道!聚铭网络入选安全419年度策划“2023年教育行业优秀解决方案”

近日&#xff0c;由网络安全产业资讯媒体安全419主办的《年度策划》2023年度优秀解决方案评选结果正式出炉&#xff0c;聚铭网络「高校大日志留存分析及实名审计解决方案」从众多参选方案中脱颖而出&#xff0c;被评为“教育行业优秀解决方案”&#xff0c;以硬核实力引领行业赛…

第四节课 XTuner 大模型单卡低成本微调实战 作业

文章目录 笔记作业 笔记 XTuner 大模型单卡低成本微调原理&#xff1a;https://blog.csdn.net/m0_49289284/article/details/135532140XTuner 大模型单卡低成本微调实战&#xff1a;https://blog.csdn.net/m0_49289284/article/details/135534817 作业 基础作业&#xff1a;…

linux磁盘总结

什么是page_cache linux读写磁盘&#xff0c;如果都是采用directIO的话&#xff0c;效率太低&#xff0c;所以我们在读写磁盘上加了一层缓存&#xff0c;page_cache。读的话&#xff0c;如果page_cache有的话&#xff0c;就不用向磁盘发出请求。写的话&#xff0c;也直接写入的…

Python与VSCode环境:手把手教你安装与配置【第22篇—python安装与配置】

文章目录 1. 安装Python2. 配置Python虚拟环境3. 安装Vscode4. 安装Python插件5. 配置Vscode与虚拟环境6. 创建Python项目7. 运行和调试8. 使用扩展功能 9. 安装Jupyter支持10. 版本管理与集成11. 自定义配置结语 随着Python的普及&#xff0c;选择一款高效的集成开发环境&…