#Prompt##提示词工程##AIGC##LLM#使用大型预训练语言模型的关键考量

news2024/12/24 2:08:15

如果有不清楚的地方可以评论区留言,我会给大家补上的!
本文包括:
Prompt 的一些行业术语介绍
Prompt 写好提示词的方法经验介绍(附示例教程)
LLM自身存在的问题(可以用Prompt解决的以及无法用Prompt解决的)

技术性能与策略

性能指标

  • 精确度 (Precision):选出的东西中,有多少是正确的。(准确-谨慎则高)
  • 召回率 (Recall):所有应该被挑选出来的东西中,实际上有多少被挑选出来了。(全面-宽松则高)
  • F1得分 (F1):同时考虑精确度和召回率,给出一个综合的评分。如果你的F1得分很高,那么你在挑选时既准确又全面。
  • 模板粘性 (Template Stickiness):在语言模型中,模板粘性描述的是模型在多次使用相同的提示或模板时,保持一致性的能力。高粘性意味着模型很可能重复使用相同的方式来回应,而低粘性意味着模型的回应可能会有更多的变化。(灵活则低)

输入方法

定向刺激提示与标准提示
定向刺激:需要特定信息或在特定情境下的问题
详细地说明,“这是一朵玫瑰,它有红色的花瓣和带刺的茎。” 你给予的信息是具体的、有方向的,旨在引导他更准确地识别玫瑰。
标准提示:普遍性回答的场景
“这是一朵花,你认为是什么种类?”这里你没有给出具体的指引,只是提出了一个开放式的问题。标准提示就是这样,它不包含额外的指导或信息,让模型自己去解释和回答。这种提示更加通用,可以适用于更多的情况,但可能不会像定向刺激提示那样引导出特定类型的回答。

输入:问题+文本+选项
输出:基本原理+回答
程序辅助语言模型 (PAL)

输入(用户提供):
提示(用户给模型):
我有一系列的数字:3, 7, 2, 8。我需要计算它们的总和。请写一个Python脚本来计算这些数字的总和。


输出(模型生成):
回答(模型给出的Python脚本):
# Python脚本来计算数字总和
numbers = [3, 7, 2, 8]
total_sum = sum(numbers)
print("数字的总和是:", total_sum)

提示词列表
随机指示必须出现的词语
(比如儿童list[
“王子”, “公主”, “巫婆”, “巨人”, “精灵”, “小动物”,
“魔法”, “魔法森林”, “魔法法杖”, “魔法咒语”,
“冒险”, “困难”, “危险”,
“友情”, “朋友”, “支持”, “关心”,
“爱情”, “浪漫”,
“家庭”, “亲子关系”,
“冒险之旅”, “未知世界”, “新朋友”,
“奇幻世界”, “仙境”, “仙女王国”, “奇幻森林”,
“教育”, “道德”, “品德”, “解决问题”,
“快乐结局”,
“魔毯”, “魔镜”, “魔法戒指”
])
训练数据、教科书式训练、扩充训练:目标受众对应训练数据不一样

策略定义与应用

  • Baseline: 标准使用,无特殊策略。
  • CoT (Chain of Thought): 提供推理链的示例来帮助模型分步骤解决问题。
  • Zero-CoT: 不提供示例,要求模型自发推理。
  • **Auto-CoT:**内部进行推理但不显示全部过程的系统。

Auto-CoT通常是通过训练过程中使用特定的数据集和训练策略来实现的,让模型学会在给出答案前先展现出解题的逻辑链条。

  • +inst (instructions): 添加说明以指导模型回答。
    • +rawinst: 用户直接提供指导。“请按照五段式论文的格式回答以下问题…”
    • +sysinst: 系统提供角色和任务说明。“作为一个旅行顾问,你应该提供…”
    • +bothinst: 指导分为用户消息和系统消息。
      | 简称 | 描述 | |
      | — | — | — |
      | Baseline | 标准的回答模式,不使用任何特别的指导或推理策略。 | “巴黎是哪个国家的首都?” -> “巴黎是法国的首都。” |
      | CoT | 展示解决问题的思考过程,通常用于复杂问题的逐步推理。 | “如果我有3个苹果,吃掉了一个,我还有几个?” -> “你开始有3个苹果,吃掉1个,所以3-1=2。你还有2个苹果。” |
      | Zero-CoT | 不展示推理过程,直接给出答案。 | “如果我有3个苹果,吃掉了一个,我还有几个?” -> “你还有2个苹果。” |
      | rawinst | 用户提供明确的指导来告诉模型如何回答问题。 | 用户提示: “用诗的形式告诉我太阳的重要性。” -> 模型回答: “太阳,天空的炽热之心…” |
      | sysinst | 系统提供的角色和任务说明,指导模型如何回答。 | 系统提示: “作为历史老师,解释一下法国大革命。” -> 模型回答: "法国大革命是…” |
      | bothinst | 结合用户和系统的指令来指导模型。 | 系统提示: “作为科学家…”, 用户提示: “…解释黑洞。” -> 模型回答: "黑洞是…” |
      | mock | 通过模拟对话来提供指令,通常用于角色扮演。 | “如果我是国王,你作为顾问会告诉我什么?” -> "陛下,我建议…” |
      | reit | 通过重复关键说明来强化指导。 | “请记住,每次回答都要提到数据。数据显示…” -> 模型每次回答时都会提及数据。 |
      | strict | 要求模型严格按照给定的模板回答。 | “按照五段论格式回答…” -> 模型回答会有明确的介绍、三个支撑段落和结论。 |
      | loose | 允许模型在给定的框架内自由发挥。 | “你可以自由地讨论关于月球的事实。” -> 模型提供了一系列有关月球的有趣事实。 |
      | right | 要求模型得出正确的结论,强调准确性。 | “确保你的回答是科学上正确的…” -> 模型回答时会重点确保信息的准确性。 |
      | info | 提供额外的信息以解决常见的推理失败。 | “考虑到地球是圆的,解释日落。” -> 模型会利用这个信息来解释日落。 |
      | name | 为模型提供一个名称,有助于在对话中建立身份和上下文。 | “你叫什么名字?” -> “你可以叫我Alex。” |
      | pos | 在查询之前向模型提供积极的反馈。 | “你之前的解释非常好,请继续这样解释…” -> 模型在后续的回答中会保持同样的风格。 |

实例说明

  • 用例分析:使用CoT策略提高解决数学问题的准确率。
  • 性能提升:在使用+bothinst策略时,F1得分提升至87.5%。
    | 提示修改 | 精确度(Precision) | 召回率(Recall) | F1得分(F1) | 模板粘性(Template Stickiness)模板粘性(模板粘性) |
    | — | — | — | — | — |
    | 基线 (Baseline)基线(Baseline) | 61.2 | 70.6 | 65.6 | 79% |
    | CoT | 72.6 | 85.1 | 78.4 | 87% |
    | Zero-CoT | 75.5 | 88.3 | 81.4 | 65% |
    | +rawinst | 80 | 92.4 | 85.8 | 68% |
    | +sysinst | 77.7 | 90.9 | 83.8 | 69% |
    | +bothinst | 81.9 | 93.9 | 87.5 | 71% |
    | +bothinst+mock | 83.3 | 95.1 | 88.8 | 74% |
    | +bothinst+mock+reit | 83.8 | 95.5 | 89.3 | 75% |
    | +bothinst+mock+reit+strict | 79.9 | 93.7 | 86.3 | 98% |
    | +bothinst+mock+reit+loose | 80.5 | 94.8 | 87.1 | 95% |
    | +bothinst+mock+reit+right | 84 | 95.9 | 89.6 | 77% |
    | +bothinst+mock+reit+right+info | 84.9 | 96.5 | 90.3 | 77% |
    | +bothinst+mock+reit+right+info+name+ | 85.7 | 96.8 | 90.9 | 79% |
    | +bothinst+mock+reit+right+info+name+pos | 86.9 | 97 | 91.7 | 81% |

文化考量与偏见

语言与文化关联

https://arxiv.org/pdf/2303.17466.pdf

  • 文化适应性:通过添加特定文化提示,减少模型回应的文化差异。
    • 英语与美国文化
    • 汉语与中国文化

文化偏见

https://arxiv.org/ftp/arxiv/papers/2303/2303.16281.pdf

  • GPT文化偏见问题:指出GPT等模型在处理不同文化背景的输入时可能存在的偏见。
  • 重要性:数字平台在社会领域的广泛影响和跨学科合作的必要性。

改进措施

  • 案例研究:分析数字平台如搜索引擎和社交媒体在文化表达上的差异。
  • 多学科合作:推动计算机科学与人文社会科学的交流合作。

模型的逻辑连贯性

GPT逻辑步骤

  • 跳步问题:连续逻辑步骤中的错误累积可能导致后续推理的准确率下降。

解决策略

  • 记忆性能提升:提高模型对前文记忆的保持能力,减少逻辑跳步问题。

不让GPT输出过多信息

https://www.promptingguide.ai/applications/pf
DO NOT SAY THINGS ELSE OK, UNLESS YOU DONT UNDERSTAND THE FUNCTION
只要输出……,其余不要输出。

案例

案例一

现在你是导演,我讲给你补充知识和示例,你需要为我的故事设计连续并且完整的多个镜头,并将这些镜头整理成文字给我。我将给你这个故事的剧本,请按照故事剧本里的内容,将故事剧本的内容进行分拆,并转化成摄像机从开始到结束的画面,分拆后的每一个画面作为一个镜头文本的内容。请注意,生成的镜头文本不要遗漏故事剧本里的内容,也不要重复地出现故事剧本的内容。保证你所设计的镜头,能让故事连贯、流畅、完整地展现

+inst (instructions)+sysinst: 系统提供角色和任务说明。
reit 通过重复关键说明来强化指导。

知识补充:
2.镜头语言,你需要有创意性地设计镜头语言,镜头语言包括镜头种类和镜头角度。镜头种类有以下几种:单人镜头、双人镜头、多人镜头、过肩镜头、主观镜头;镜头角度有以下几种:平视、俯视、仰视、航拍。

提示词列表

7.你需要分析故事剧本的内容,对每一个镜头发生的地点进行补充。请按照以下顺序逐次进行补充细化:1、地点的具体名词,如卧室的床、花园的角落、厕所的马桶、树木的树根等。2、地点的造型特点,如陈旧腐朽的、整洁干净的、凌乱的等。……

CoT

**示例:**第1场,第1镜
#剧本原文#:一群人围在药店柜台前,手中还提着塑料袋,塑料袋里装着各种感冒药与退烧药(非特写)。
#镜头语言#:[‘多人镜头’,‘平视’]
#关键词#:[‘药店’,‘群众’,‘塑料袋’,‘感冒药’,‘退烧药’,‘中年男人’,‘柜台’,‘不耐烦’,‘离开’,‘气愤’,‘大声喊叫’,‘混乱’,‘焦急’,‘挤向柜台’,‘叙事重点’,‘情绪高涨’,‘失控’]
……

strict 要求模型严格按照给定的模板回答。

案例二

逐步分析最后一句话表达的此时情况:

CoT

  1. 这段话里面出现的人物有几个
    输出要求:只用告诉我阿拉伯数字,不要输出其他内容
    输出示例:人物个数:2

strict 要求模型严格按照给定的模板回答。

……

  1. 人物之间最后所处的相对位置推理过程
    相对位置即人物间的距离和角度,人物分别在场景中的位置,可通过逐句推理获取相对位置,推理过程需要展示,小场景人物位置判断需要结合上下文。大场景人物位置需要按照上文推理。

info 提供额外的信息以解决常见的推理失败。
reit 通过重复关键说明来强化指导。

5.相对位置推理结论
输出要求:根据上面的推理过程获得最后的相对位置。无论结果是什么,位置信息具体描述 以外的多余内容不要输出。如果未提供相对位置且无法推测,请直接输出“无法确定”,其余内容不用输出

只要输出……,其余不要输出。

参考资料

www.promptingguide.ai
https://www.promptingguide.ai/applications/pf Prompt Engineering Guide
https://flowgpt.com/creative/stable-diffusion
https://arxiv.org/abs/2305.18189v1 标记角色:使用自然语言提示来衡量语言模型中的刻板印象
https://arxiv.org/abs/2301.01768 对话式人工智能的政治意识形态:ChatGPT 亲环境、左翼自由主义倾向的证据汇集
https://arxiv.org/abs/2303.16421 ChatGPT 是一个知识渊博但缺乏经验的求解器:大型语言模型中常识问题的调查
https://arxiv.org/abs/2304.05351 华尔街新手:针对多模式股票走势预测挑战的 ChatGPT 零样本分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1382074.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux基础工具的使用(yum,vim,gcc,g++,gdb,make/makefile)【详解】

目录 linux软件包管理器-yum什么是软件包?查找软件包如何安装软件卸载软件 linux编辑器 - vimvim的基本概念vim模式之间的切换vim命令模式各命令汇总vim底行模式各命令汇总 Linux编译器 - gcc/ggcc/g的作用gcc/g选项预处理编译汇编链接静态库与动态库 Linux调试器 -…

【python】正则表达式-快速信息匹配,过滤与检测

前言 菜某的总结,希望能够帮到大家。 正则表达式的概念 简单来说就是匹配信息,创建一个规则,匹配文本中符合这个规则的内容 作用领域 单单看他的概念可能觉得他的用途也就是查找,实际上他的用途很广泛 1.信息筛选&#xff0c…

一、QT的前世今

一、Qt是什么 1、Qt 是一个1991年由奇趣科技开发的跨平台C图形用户界面应用程序开发框架。它既可以开发GUI程序,也可用于开发非GUI程序,比如控制台工具和服务。 2、Qt是面向对象的框架,具有面向对象语言的特性:封装、继承、多态。…

电子学会2023年12月青少年软件编程(图形化)等级考试试卷(三级)真题,含答案解析

青少年软件编程(图形化)等级考试试卷(三级) 分数:100 题数:31 一、单选题(共18题,共50分) 1. 运行左图程序,想得到右图中的效果,红色框应填写的数值是?( ) A.

vmware和ubuntu镜像下载地址

这里有vmware16和ubuntu20.0下载 链接:https://pan.baidu.com/s/1i9IC-KnJlrVDbl6SJ5SIKQ?pwdy2dd 提取码:y2dd 链接:https://pan.baidu.com/s/1imqJVD2dLE1TB6jIrq1-Fg?pwd690f 提取码:690f 这个是我本人下的vmware17 密钥可…

超声波眼镜清洗机清洗眼镜会有伤害吗?适合洗眼镜超声波清洗机

眼镜作为日常生活中不可或缺的辅助视力工具,经常需要清洁保养以确保视力清晰和舒适佩戴。随着科技的发展,超声波眼镜清洗机成为越来越受欢迎的清洁方式。然而,很多人可能会担心使用超声波清洗机是否会对眼镜造成损害。但是可以很可以的告诉大…

Vulnhub-Lampiao

一、信息收集 nmap扫描 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.7 (Ubuntu Linux; protocol 2.0) | ssh-hostkey: | 1024 46:b1:99:60:7d:81:69:3c:ae:1f:c7:ff:c3:66:e3:10 (DSA) | 2048 f3:e8:88:f2:2d:d0:b2:54:0b:…

Xtuner大模型微调

Xtuner大模型微调 一、课程笔记 文档链接:https://github.com/InternLM/tutorial/blob/main/xtuner/README.md 视频链接: https://www.bilibili.com/video/BV1yK4y1B75J/ 大模型微调 大模型的训练利用了各类数据,可以说是一个通才&#xff…

基于Matlab/Simulink开发自动驾驶的解决方案

文章目录 处理自动驾驶数据 仿真自动驾驶场景 设计感知算法 设计规划和控制算法 生成代码和部署算法 集成和测试 参考文献 使用 MATLAB/Simulink开发自动驾驶,能够深入建模真实世界的行为、减少车辆测试并验证嵌入式软件的功能,从而推进自动驾驶感…

宝塔面板使用phpMyAdmin 502 Bad Gateway

第一步软件商店安装PHP 第二步设置phpMyAdmin,选择PHP版本 – 解决

【软件测试】学习笔记-不同视角的软件性能与性能指标

本篇文章探讨新的测试主题:性能测试,因为性能测试的专业性很强,所以我会以从0到1的入门者视角,系统性地阐述性能测试的方法以及应用领域,用实例去诠释各种性能指标。 本篇文章站在全局的视角,帮你梳理软件性…

漏洞复现-nginxWebUI runCmd前台远程命令执行漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

【AIGC】Controlnet:基于扩散模型的文生图的可控性

前言 controlnet可以让stable diffusion的生图变得可控。 文章连接:https://arxiv.org/pdf/2302.05543.pdf 摘要 冻结了stable diffusion的预训练模型并重用它的预训练编码层神经网络结构与零初始化卷积层连接,从零开始逐渐增加参数,并确…

C练习——汉诺塔

题目: 汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。 大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆…

extern static 在linux 和 qt下差别

从五个点来说 1.p3.h 中 静态定义一个const的int 变量并且赋值 2.p5.h 声明函数test2的定义 3. 直接extern 引用声明 test1() 函数 而不是像p5.h一样 把函数声明写到头文件 在别的.c文件直接包含头文件 第二点和第三点 是引用声明函数的两种用法 4.main函数 中static静态定…

GCC工具源码编译

文章目录 背景一、下载源码二、编译前依赖准备2.1 相关工具依赖2.2 相关lib(gmp/ mpfr /mpc)依赖2.2.1 lib源码下载2.2.2 lib源码编译 三、编译GCC3.1 编译3.2 链接 四、报错处理 背景 日常可能涉及到系统里自带GCC版本与被编译源码存在不兼容&#xff…

64位ATT汇编语言整数乘法printf输出

multiplyWithPrint.s里边的内容如下 .section .datastringToShow:.ascii "%d\n\0" .global main .section .text main:movq $4,%raxmovq $2,%rdi# mulq 默认带上rax进行乘积,可以省略rax中的乘数,最后积会放到rax里边。mulq %rdi# C语言的pri…

解决MPICH的GPU初始化失败:一次深入探索

今天来分享“MPICH:MPII_Init_thread(222): gpu_init failed”这个问题的解决方式 文章目录 前言问题原因解决方案 前言 如果在安装MPICH的时候没有注意要一些选项,那么当使用mpicxx mpi_send.cpp -o send && mpirun -n 2 ./send进行编译输出的…

如何调整 Windows 11 任务栏位置、对齐方式,及自定义任务栏

更新于:2023-11-22 分类:Windows 阅读(115407) 评论(12) 如果你是 Windows 11 用户中的一员,一定在不断尝试它的新功能。Windows 11 操作系统采用了全新设计的外观,具有重新设计的 Windows 资源管理器、圆润的窗口边缘和默认将应用…

管理软件供应链中网络安全工具蔓延的三种方法

软件开发组织不断发展,团队成长,项目数量增加。技术堆栈发生变化,技术和管理决策变得更加分散。 在这一演变过程中,该组织的 AppSec 工具组合也在不断增长。在动态组织中,这可能会导致“工具蔓延”。庞大的 AppSec 工…