数据结构——排序算法之快速排序

news2024/11/14 15:27:09

 

  个人主页:日刷百题

系列专栏〖C/C++小游戏〗〖Linux〗〖数据结构〗 〖C语言〗

🌎欢迎各位点赞👍+收藏⭐️+留言📝 

前言:

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。
基本思想:
任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

递归实现方式常见有三种,区别于单趟思想,性能差别不大,下面我们看下快排递归实现。

一、快速排序的递归实现

1.1   Hoare排序

1.1.1  单趟目的

 左子序列中所有元素均小于基准值key,右子序列中所有元素均大于基准值key。

1.1.2   动图解析

单趟思路:

(1)首先记录下keyi位置为最左边位置,然后left和right分别从数组两端开始往中间走。
(2)right先开始向中间行动,如果right处的值小于keyi处的值,则停止等待left走。
(3)left开始行动,当left找到比keyi处小的值时,left和right处的值进行交换。
(4)当两个位置相遇时,将相遇位置的值与keyi处的值进行交换。
 

该排序有一个需要注意的点是:必须左边先走找小

因为左边先走,必定相遇时位置对应的值小于keyi位置值,保证最后这俩个位置交换,相遇位置即是keyi位置对应值最终位置。

解析:

(1)右边先走,假设left遇到right,最后相遇情况是right找到了小于keyi位置的值,left没有找到大于keyi位置值,所以相遇位置值小于keyi位置值。

(2)右边先走,假设right遇到left,最后相遇情况是left找到大,right找到小,left与right互换,left位置对应值小于keyi位置值,right继续找小,与left相遇,所以相遇位置值小于keyi位置值。

 1.1.3  代码实现

解析:

该代码将单趟写在子函数中,这样使得整个代码层次更加清晰,也便于理解。可以发现我们对单趟中keyi做了优化,因为keyi的位置,是影响快速排序效率的重大因素。因此我们采用了三数取中的方法解决选keyi不合适的问题。即知道这组无序数列的首和尾后,我们只需要在首,中,尾这三个数据中,选择一个排在中间的数据作为基准值(keyi),进行快速排序,即可进一步提高快速排序的效率。

后面2种单趟也做这样的优化,后面就不过多介绍。

//Hoare快排
int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
		{
			return end;
		}
		else
		{
			if (a[begin] > a[mid])
			{
				return mid;
			}
			else
			{
				return begin;
			}
		}
	}
	else//(a[begin]<= a[end])
	{
		if (a[begin] > a[mid])
		{
			return begin;
		}
		else
		{
			if (a[end] > a[mid])
			{
				return mid;
			}
			else
			{
				return end;
			}
		}
	}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Hoare(int* a, int begin, int end)
{
	int mid = GetMid(a,begin, end);
	swap(&a[begin], &a[mid]);
	int keyi = begin;
	int left = begin;
	int right = end;
	while (left < right)
	{
		//右边找小
		while (left < right && a[right] >= a[keyi])
		{
			right--;
		}
		//左边找大
		while (left < right && a[left] <= a[keyi])
		{
			left++;
		}
		swap(&a[left], &a[right]);


	}
	swap(&a[keyi], &a[left]);
	return left;

}
void  QuickSort_Hoare(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi= _QuickSort_Hoare(a, begin, end);//单趟
	//递归  [begin,keyi-1] keyi,[keyi+1,end]
	QuickSort_Hoare(a, begin, keyi - 1);
	QuickSort_Hoare(a, keyi+1, end);

}

1.2  挖坑法 

1.2.1  单趟目的

 左子序列中所有元素均小于基准值key,右子序列中所有元素均大于基准值key。

1.2.2  动图解析

单趟思路:

(1)将begin处的值放到key中,将其置为坑位(pit)
(2)right找到比key小的值后将值放入坑位,然后将此处置为新的坑。
  (3)  left找到比key大的值后将值放入坑位,然后将此处置为新的坑。
  (4)当left与right相遇的时候,将key放入到坑位中。

 1.2.3  代码实现 

int GetMid(int* a, int begin, int end)
{
	int mid = (begin + end) / 2;
	if (a[begin] > a[end])
	{
		if (a[end] > a[mid])
		{
			return end;
		}
		else
		{
			if (a[begin] > a[mid])
			{
				return mid;
			}
			else
			{
				return begin;
			}
		}
	}
	else//(a[begin]<= a[end])
	{
		if (a[begin] > a[mid])
		{
			return begin;
		}
		else
		{
			if (a[end] > a[mid])
			{
				return mid;
			}
			else
			{
				return end;
			}
		}
	}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pit(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int pit = begin;
	int  key = a[begin];
	int left = begin;
	int right = end;
	while (left < right)
	{
		while (left < right && a[right] >= key)
		{
			right--;
		}
		a[pit] = a[right];
		pit = right;
		while(left < right&& a[left] <= key)
		{
			left++;
		}
		a[pit] = a[left];
		pit = left;
	}
	a[left] = key;
	return left;

}
void  QuickSort_Pit(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = _QuickSort_Pit(a, begin, end);
	//[begin,keyi-1],keyi,[keyi+1,end]
	QuickSort_Pit(a, begin, keyi - 1);
	QuickSort_Pit(a, keyi + 1, end);

}

1.3 双指针法

1.3.1  单趟目的

 左子序列中所有元素均小于基准值key,右子序列中所有元素均大于基准值key。

1.3.2  动图解析

单趟思路:

(1)cur位于begin+1的位置,prev位于begin位置,keyi先存放begin处的值。
(2)如果cur处的值大于key处的值,cur++.
(3)如果cur处的值小于等于key处的值,cur处的值,则与prev+1处的值进行交换。
(4)当循环结束时,将prev处的值与keyi的值相交换,返回prev

1.3.3  代码实现

int GetMid(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] > a[end])
{
	if (a[end] > a[mid])
	{
		return end;
	}
	else
	{
		if (a[begin] > a[mid])
		{
			return mid;
		}
		else
		{
			return begin;
		}
	}
}
else//(a[begin]<= a[end])
{
	if (a[begin] > a[mid])
	{
		return begin;
	}
	else
	{
		if (a[end] > a[mid])
		{
			return mid;
		}
		else
		{
			return end;
		}
	}
}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pointer(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int key = begin;
	int prev= begin;
	int cur = prev + 1;
	while (cur <= end)
	{
		if (a[cur] > a[key])
		{
			cur++;
		}
		else
		{
			prev++;
			swap(&a[prev], &a[cur]);
			cur++;

		}
	}
	swap(&a[key], &a[prev]);
	return prev;

}
void  QuickSort_Pointer(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	int keyi = _QuickSort_Pointer(a, begin, end);
	//[begin,keyi-1],keyi,[keyi+1,end]
	QuickSort_Pointer(a, begin, keyi - 1);
	QuickSort_Pointer(a, keyi + 1, end);

}

二、快速排序的优化

2.1  三数取中法选key

这个方法提升效率比较显著,上面已经排序均用该方法优化。

2.2  递归到小的子区间,使用插入排序

由于快速排序是递归进行的,当递归到最后三层时,此时数组中的值其实已经接近有序,而且这段区间再递归会极大占用栈(函数栈帧开辟的地方)的空间,最后三层的递归次数占总递归次数的百分之90,所以在区间数据量小于10,我们就不进行递归快速排序了,转而使用插入排序。

 

int GetMid(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] > a[end])
{
	if (a[end] > a[mid])
	{
		return end;
	}
	else
	{
		if (a[begin] > a[mid])
		{
			return mid;
		}
		else
		{
			return begin;
		}
	}
}
else//(a[begin]<= a[end])
{
	if (a[begin] > a[mid])
	{
		return begin;
	}
	else
	{
		if (a[end] > a[mid])
		{
			return mid;
		}
		else
		{
			return end;
		}
	}
}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pointer(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int key = begin;
	int prev= begin;
	int cur = prev + 1;
	while (cur <= end)
	{
		if (a[cur] > a[key])
		{
			cur++;
		}
		else
		{
			prev++;
			swap(&a[prev], &a[cur]);
			cur++;

		}
	}
	swap(&a[key], &a[prev]);
	return prev;

}
void  QuickSort_Pointer(int* a, int begin, int end)
{
	if (begin >= end)
	{
		return;
	}
	if(end-begin+1>10)
{
int keyi = _QuickSort_Pointer(a, begin, end);
	//[begin,keyi-1],keyi,[keyi+1,end]
	QuickSort_Pointer(a, begin, keyi - 1);
	QuickSort_Pointer(a, keyi + 1, end);
}
else
{
InsertSort(a + begin, end - begin + 1);
}

}

三、快速排序的非递归实现

递归改为非递归,一般2种方法:

1、递归转化为非递归可以写成循环,比如斐波那契数列

2、递归转化为非递归可以写成栈,比如现在的快排

递归使用的空间是栈空间,所以容易出现栈溢出的情况,我们将快速排序改为非递归版本,这样空间的开辟就在堆上了,这样也就解决了这个问题。

快速排序的非递归与递归思想相同,非递归使用栈来模拟递归的实现,思路如下:

(1)入栈一定要保证先入左再入右。
(2)取出两次栈顶的元素,然后进行单趟排序

(3)将区间分为[left , keyi - 1] ,keyi ,[ keyi +  1 , right ] 进行右、左入栈。若区间不存在或为1个值则不入栈。
(4)循环2、3步骤直到栈为空。
 

代码实现:

int GetMid(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] > a[end])
{
	if (a[end] > a[mid])
	{
		return end;
	}
	else
	{
		if (a[begin] > a[mid])
		{
			return mid;
		}
		else
		{
			return begin;
		}
	}
}
else//(a[begin]<= a[end])
{
	if (a[begin] > a[mid])
	{
		return begin;
	}
	else
	{
		if (a[end] > a[mid])
		{
			return mid;
		}
		else
		{
			return end;
		}
	}
}
}
void swap(int* x, int* y)
{
	int z = *x;
	*x = *y;
	*y = z;
}
int  _QuickSort_Pointer(int* a, int begin, int end)
{
	int mid = GetMid(a, begin, end);
	swap(&a[begin], &a[mid]);
	int key = begin;
	int prev= begin;
	int cur = prev + 1;
	while (cur <= end)
	{
		if (a[cur] > a[key])
		{
			cur++;
		}
		else
		{
			prev++;
			swap(&a[prev], &a[cur]);
			cur++;

		}
	}
	swap(&a[key], &a[prev]);
	return prev;

}

typedef int DateType;
typedef struct Stack
{
    DateType* a;
    int top;
    int capacity;
}Stack;
//初始化和销毁栈
void InitStack(Stack* ps)
{
    assert(ps);
    ps->a = NULL;
    ps->top = ps->capacity = 0;
}
void DestoryStack(Stack* ps)
{
    assert(ps);
    free(ps->a);
    ps->a = NULL;
    ps->top = 0;
    ps->capacity = 0;
}

//出栈和入栈
void StackPush(Stack* ps, DateType x)
{
    assert(ps);
    if (ps->top == ps->capacity)
    {
        int newcapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
        DateType* tmp = (DateType*)realloc(ps->a, sizeof(DateType) * newcapacity);
        if (tmp == NULL)
        {
            perror("realloc fail:");
            return;
        }
        ps->a = tmp;
        ps->capacity = newcapacity;
    }
    ps->a[ps->top] = x;
    ps->top++;
}
void StackPop(Stack* ps)
{
    assert(ps);
    assert(ps->top > 0);
    ps->top--;
}

//栈的有效个数和栈顶元素
int StackSize(Stack* ps)
{
    assert(ps);
    return ps->top;
}
DateType StackTop(Stack* ps)
{
    assert(ps);
    assert(ps->top > 0);
    return   ps->a[ps->top - 1];
}
//判空
bool IsEmptyStack(Stack* ps)
{
    assert(ps);
    return ps->top == 0;
}
void  QuickSort_Non_r(int* a, int begin, int end)
{
    Stack tmp;
    InitStack(&tmp);
    StackPush(&tmp,end);
    StackPush(&tmp, begin);
    while (!IsEmptyStack(&tmp))
    {
        int left = StackTop(&tmp);
        StackPop(&tmp);
        int right = StackTop(&tmp);
        StackPop(&tmp);


        int keyi = _QuickSort_Pointer(a, left, right);
        if (keyi+1 <right)
        {
            StackPush(&tmp,right);
            StackPush(&tmp,keyi+1);

        }
        if (left < keyi - 1)
        {
            StackPush(&tmp, keyi-1);
            StackPush(&tmp,left);
        }
   }

    DestoryStack(&tmp);



}

 总结:本篇文章总结了快速排序的递归及非递归俩大种方式。

希望大家阅读完可以有所收获,同时也感谢各位铁汁们的支持。文章有任何问题可以在评论区留言,百题一定会认真阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1381515.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7. 分页插件

对于分页功能&#xff0c;MyBatisPlus 提供了分页插件&#xff0c;只需要进行简单的配置即可实现&#xff1a; Configuration public class MybatisPlusConfig {// 旧版 // Bean // public PaginationInterceptor paginationInterceptor() { // PaginationIntercept…

SECS/GEM的变量SVID是什么?JAVA SECS通信 JAVA与SECS集成资料大全JAVA开发SECS快速入门资料

Java与SECS基础通信 Java实现SECS指令S2F17获取时间 Java实现SECS指令 S10F3 终端单个显示例子 工艺配方管理S7FX Java实现SECS指令 S5F1报警/取消报警上传 实例源码及DEMO请查阅 变量可以是设备的状态信息 定义&#xff1a; 此功能允许主机查询设备数据变量&#x…

抓交通肇事犯(python)

问题描述&#xff1a; 一辆卡车违反交通规则&#xff0c;撞人后逃跑。现场有三人目击该事件&#xff0c;但都没有记住车号&#xff0c;只记下了车号的一些特征。甲说&#xff1a;牌照的前两位数字是相同的&#xff1b;乙说&#xff1a;牌照的后两位数字是相同的&#xff0c;但…

【SpringBoot3】实现自定义配置——以静态资源自定义配置为例(源码+代码示例)

这里写目录标题 1 配置类位置2 静态资源配置方式3 整体配置示例3.1 创建配置类3.2 实现配置方法3.3 指定配置文件属性 1 配置类位置 在左侧搜索autoconfigure可以找到spring-boot-autoconfigure包&#xff0c;打开其下的META-INF -> spring -> AutoConfiguration.import…

面向对象的三大特性

个人主页&#xff1a;告别&#xff0c;今天 个人专栏&#xff1a;java趣味之旅 ​​​​​​​本专栏旨在分享学习网络编程的学习心得和复习总结&#xff0c;欢迎大家在评论区交流讨论 1. 封装 1.1 封装的概念 面向对象程序三大特性&#xff1a;封装、继承、多态。而类和对象…

RibbonGroup添加QAction

实际项目中&#xff0c;group中需要添加按钮与点击事件&#xff1a; 添加实例如下&#xff1a; if (Qtitan::RibbonGroup* groupClipboard pageHome->addGroup(tr("Clipboard"))) { //右下角按钮显示 groupClipboard->setO…

xtu oj 1329 连分式

题目描述 连分式是形如下面的分式&#xff0c;已知a,b和迭代的次数n&#xff0c;求连分式的值。 输入 第一行是一个整数T(1≤T≤1000)&#xff0c;表示样例的个数。 每行一个样例&#xff0c;为a,b,n(1≤a,b,n≤9) 输出 每行输出一个样例的结果&#xff0c;使用x/y分式表达…

BUUCTF--get_started_3dsctf_20161

这题我本来以为是简单的ret2text.结果还是中了小坑。 先看保护&#xff1a; 32位程序&#xff0c;接下来测试下效果&#xff1a; 看看IDA中逻辑&#xff1a; 题目一进来有很多函数&#xff0c;盲猜是静态编译了。而且在函数堆中发现了个get_flag。信心慢慢的直接写代码返回get…

Qt点击按钮在附近弹出下拉框

效果 MainWindow.h #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include"toollayout.h" QT_BEGIN_NAMESPACE namespace Ui { class MainWindow; } QT_END_NAMESPACEclass MainWindow : public QMainWindow {Q_OBJECTpublic:MainWindow…

SAP OData(一)简单创建与发布odata

一&#xff0c;事务码SEGW 该事务码以project的概念来组织OData服务&#xff0c;并以project为整体来生成并发布。系统中预置了一些project可供我们参考&#xff0c;例如crm_opportunity&#xff0c;crm_task等等。 新建project&#xff0c;我们需要填写project名字以及所属p…

FlinkCDC的分析和应用代码

前言&#xff1a;原本想讲如何基于Flink实现定制化计算引擎的开发&#xff0c;并以FlinkCDC为例介绍&#xff1b;发现这两个在表达上不知以谁为主&#xff0c;所以先分析FlinkCDC的应用场景和技术实现原理&#xff0c;下一篇再去分析Flink能在哪些方面&#xff0c;做定制化计算…

案例109:基于微信小程序的高校寻物平台设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

SpringBoot之优化高并发场景下的HttpClient并提升QPS

HttpClient优化思路 使用连接池&#xff08;简单粗暴&#xff09; 长连接优化&#xff08;特殊业务场景&#xff09; httpclient和httpget复用 合理的配置参数&#xff08;最大并发请求数&#xff0c;各种超时时间&#xff0c;重试次数&#xff09; 异步请求优化&#xff0…

【开源】基于JAVA+Vue+SpringBoot的校园电商物流云平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 商品数据模块2.3 快递公司模块2.4 物流订单模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 商品表3.2.2 快递公司表3.2.3 物流订单表 四、系统展示五、核心代码5.1 查询商品5.2 查询快递公司5.3 查…

数据结构链表完整实现(负完整代码)

文章目录 前言引入1、链表定义及结构链表的分类3、单向不带头链表实现实现完整代码 4、带头双向循环链表实现实现完整代码 前言 引入 在上一篇文章中&#xff0c;我们认识了顺序表&#xff0c;但是在许多情况中&#xff0c;顺序表在处理一些事件时还存在许多问题&#xff0c;比…

P1067 [NOIP2009 普及组] 多项式输出————C++

目录 [NOIP2009 普及组] 多项式输出题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 提示 解题思路Code运行结果 [NOIP2009 普及组] 多项式输出 题目描述 一元 n n n 次多项式可用如下的表达式表示&#xff1a; f ( x ) a n x n a …

现代 C++ 及 C++ 的演变

C 活跃在程序设计领域。该语言写入了许多新项目&#xff0c;而且据 TIOBE 排行榜数据显示&#xff0c;C 的受欢迎度和使用率位居第 4&#xff0c;仅次于 Python、Java 和 C。 尽管 C 在过去二十年里的 TIOBE 排名都位居前列&#xff08;2008 年 2 月排在第 5 名&#xff0c;到…

行为型设计模式——迭代器模式

迭代器模式 迭代器模式也是非常的简单&#xff0c;定义如下&#xff1a; 提供一个对象来顺序访问聚合对象中的一系列数据&#xff0c;而不暴露聚合对象的内部表示。 相信大家都使用过类似下面的迭代器&#xff1a; List<String> list new ArrayList<>(); Iterat…

Seata TC端协调全局事务

1、Seata server注册器 //来自RM分支事务注册 super.registerProcessor(MessageType.TYPE_BRANCH_REGISTER, onRequestProcessor, messageExecutor); //开启全局事务 super.registerProcessor(MessageType.TYPE_GLOBAL_BEGIN, onRequestProcessor, messageExecutor); //提交全…

MySQL夯实之路-事务详解

事务四大特性 事务需要通过严格的acid测试。Acid表示原子性&#xff0c;一致性&#xff0c;隔离性&#xff0c;持久性。 原子性&#xff08;atomicity&#xff09; 事务是不可分割的最小单元&#xff0c;对于整个事务的操作&#xff0c;要么全部提交成功&#xff0c;要么全部…