牛仔行头目标检测竞赛 李沐老师Kaggle(有代码有注释)

news2024/9/24 9:18:46
 一、比赛地址

CowBoy Outfits Detection | Kaggle

 二、数据介绍

这次比赛的数据集一共有4879个image,需要自己划分训练集和验证集。annotation的格式是json,因此如果用yolo系列的算法会涉及到json2txt这一步。当然如果不用yolo系列的就不要这段代码了。本文使用的是yolov5,所以文章内有json2txt的代码

 json里面是一个大的字典,里面有三个键值对。第一个key是info,这个是描述的数据集信息,第二个image,里面有一些图片的文件名称之类的,如下图所示,最后一个key是annotation,里面有被标记的物体的坐标,xywh等一些关键信息。这个json文件比较特殊,annotation和img对应上需要id对应,而不是文件名,在image里面的id和annotation的image_id是能够匹配上的关键信息。

接下来我就来处理这些数据

三、代码,注释

第一步当然是导包了 

import os
import json
import yaml
import pandas as pd
import shutil
import random

 第二步是加载数据

data =json.load(open(r"D:\cowboyoutfits\\train.json", 'r'))
label = data['annotations'] # 这个就是把json文件里的annotations提取出来了
# print(label)
random.seed(34) # 随机种子的作用是为了固定每次被随机采样的img,在划分train和val用
random.shuffle(label) #打乱标签

 第三步是print一下每个类别的数量,以便确定valset里面的每个类别的数量

ci = [87,1034,131,318,588]  #这个数据是从json文件中获得的,就是category_id
print('total:') # 打印每个类别的总数,每个类别对应一个数据
for i in ci:
    count = 0  # 注意count的位置,我上次leetcode刷题放错位置了,导致一直输出0
    for j in label:
        if j['category_id'] == i:
            count +=1
    print(f'id:{i} counts:{count}')

 第四步

print是你的好朋友,在看不懂的时候需要print,也需要print(type())

total_id = set(each['image_id'] for each in label ) # 比较复杂,for循环获取每个label中的字典,label的类型是string,里面包含的是dict,然后在获取image_id,转化为集合
# print(len(total_id))
# print(total_id)

 第五步,这一步是找出符合要求的图片作为valset

val_id = set()  # total_id用的集合,这里也用集合,可以保证唯一性
a, b, c, d, e = 0, 0, 0, 0, 0
# val的数量少于50=2+20+4+7+17
for each in label:
    if (each['category_id'] == ci[0] ) and (a < 2):
        val_id.add(each['image_id'])  # 集合的属性,add,list属性是append
        a +=1  # 这一步是处理图片
    elif (each['category_id'] == ci[1]) and (b < 20):
        val_id.add(each['image_id'])
        b +=1
    elif (each['category_id'] == ci[2]) and (c < 4):
        val_id.add(each['image_id'])
        c +=1
    elif (each['category_id'] == ci[3]) and (d < 7):
        val_id.add(each['image_id'])
        d +=1
    elif (each['category_id'] == ci[4]) and (e < 17):
        val_id.add(each['image_id'])
        e +=1

第六步,valset的img已经找到,现在需要找出对应的annotation,下面的算法,有一个复杂度是n^2,想不到复杂度更低的,如果大家能想出来,欢迎大家踊跃评论。

# 先通过种类找出image_id,再通过image_id找出annotations
# val_ann = [each_ann for each_ann in label if each_ann['image_id'] in val_id] # 这个也不快,还难懂
val_ann = []  # 开始处理annotations
for imid in val_id: # 这样处理其实很慢的,复杂度是n*m,不过数量比较少,实际有用的结果只有n(相等时)
    for each_ann in label:
        if each_ann['image_id'] == imid:
            val_ann.append(each_ann) # list append

print(len(val_id),len(val_ann))
# 50, 177
#不一样是因为有的一张图片有多个object

第七步,打印valset的总框数 

print('val_set')

for kind in ci:
    num = 0
    for i in val_ann:
        if i['category_id'] == kind:
            num += 1 
    print(f'id: {kind} counts: {num}') # 这个应该是物体的数量,总框数

 第八步,总的数据集减去valset,就是trainset

train_id = total_id - val_id # 这个是集合的减法
# print(train_id = total_id - val_id) 
train_ann = []
for each_ann in label:
    for tid in train_id:  
        if each_ann['image_id'] == tid:
            train_ann.append(each_ann)
            break # 找到就退出内层循环,去掉break会得到重复的结果  for循环换一下就能省掉break了,因为tid是唯一的,each_ann可能是多个
print(len(train_id),len(train_ann))  # 标签和照片数量不等是因为每个照片可能有多个标签

 第九步,创建文件夹,将图片放进对应的文件夹中

file_path = "D://cowboyoutfits//images//"
# print(os.path.join(file_path,'train'))
os.makedirs(os.path.join(file_path,'train'),exist_ok= True) # 在路径下创建文件夹
os.makedirs(os.path.join(file_path,'val'),exist_ok= True)

# current_path = os.getcwd()
# print("当前路径是:", current_path)

train_img = []
for j in data['images']:
    for i in train_id:
        if j['id'] == i:
            shutil.copy(file_path + j['file_name'],"D:\\cowboyoutfits\\images\\train") #两个参数,第一个是原来的文件,即目标文件,第二个参数是要复制到的文件夹 
            # 使用os.path.splitext获取文件名和后缀
            # file_name, file_extension = os.path.splitext(os.path.basename(file_path))
            # 扩展不要可以 file_name, _ = os.path.splitext(os.path.basename(file_path))
            # 扩展不要可以 file_name= os.path.splitext(file_path)[0])
            train_img.append(j)

val_img = []
for j in data['images']:
    for i in val_id:
        if j['id'] == i:
            shutil.copy(file_path + j['file_name'],"D:\\cowboyoutfits\\images\\val")
            val_img.append(j)

print(len(val_img),len(train_img))

第十步,将annotation放到对应的文件夹下,并将json2txt

os.makedirs(os.path.join(file_path,'labels','train'), exist_ok=True)
os.makedirs(os.path.join(file_path,'labels','val'), exist_ok=True)

train_info = [(each['id'], each['file_name'].split('.')[0], each['width'], each['height']) for each in train_img]
val_info = [(each['id'], each['file_name'].split('.')[0], each['width'], each['height']) for each in val_img]

trans = {f'{each}':f'{idx}' for (idx,each) in enumerate(ci)} # 转化为字典,type(trans)--dict

# trans = dict(zip(ci,range(len(ci)))) #不一样,没引号


# Create *.txt files for training
for (imid,fn,w,h) in train_info:
    with open ('D:\\cowboyoutfits\\images\\labels\\train\\' + fn + '.txt', 'w') as t_f:
        for t_ann in train_ann:
            if t_ann['image_id'] == imid:
                bbox = [str((t_ann['bbox'][0] + (t_ann['bbox'][2] / 2) - 1) / float(w)) + ' ', 
                        # 计算 x 中心坐标,并进行归一化。
                        str((t_ann['bbox'][1] + (t_ann['bbox'][3] / 2) - 1 )/ float(h)) + ' ',
                        str(t_ann['bbox'][2] / float(w)) + ' ',  # 计算宽度,并进行归一化。
                        str(t_ann['bbox'][3] / float(h))]
                print(bbox)
                t_f.write(trans[str(t_ann['category_id'])] + ' ' + str(bbox[0] + bbox[1] + bbox[2] + bbox[3]))
                t_f.write('\n')

# Create *.txt files for evaluating
for (imid, fn, w, h) in val_info:
    with open('D:\\cowboyoutfits\\images\\labels\\val\\' + fn + '.txt', 'w') as v_f:
        for v_ann in val_ann:
            if v_ann['image_id'] == imid:
                bbox = [str((v_ann['bbox'][0] + (v_ann['bbox'][2] / 2) - 1) / float(w)) + ' ',
                        str((v_ann['bbox'][1] + (v_ann['bbox'][3] / 2) - 1) / float(h)) + ' ',
                        str(v_ann['bbox'][2] / float(w)) + ' ',
                        str(v_ann['bbox'][3] / float(h))]
                v_f.write(trans[str(v_ann['category_id'])] + ' ' + str(bbox[0] + bbox[1] + bbox[2] + bbox[3]))
                v_f.write('\n')

 第十一步,设定一些参数,数据集放置的路径等生成yaml文件

data_yaml = dict(
    path = 'D:/cowboyoutfits', # dataset toot dir
    train = 'images/train', # train images('relative to 'path')
    val = 'images/val', # val images (relative to 'path')
    test = 'images/test', # test images (relation to 'path')
    nc = 5,
    names = ['belt', 'sunglasses', 'boot', 'coeboy_hot', 'jacket'],
    download = 'None'  
    )
with open('D:/cowboyoutfits/my_data_config.yaml', 'w') as f:
    yaml.dump(data_yaml, f, default_flow_style=False)

hyp_yaml = dict(
    lr0 = 0.01, # initial learning rate (SGD=1E-2,Adam=1E-3)
    lrf = 0.16, # final OneCycleLR learning rate (lr0 * lrf)
    momentum = 0.937, # SGD momentum/Adam beta1
    weight_decay = 0.0005, # optimizer weight decay 5e-4
    warmup_epoch = 5.0, # warmup epochs(fractions ok)
    warmup_momentum = 0.8, # warmup initial momentum
    warmup_bias_ls = 0.1, # warmup initial bias lr  
    box = 0.05, # box loss gain 
    cls = 0.3, # cls loss gain
    cls_pw = 1.0, # cls BECloss positive_weight
    obj = 0.7, #obj loss gain (scale with pixels)
    obj_pw = 1.0, # obj BCELoss positive_weight
    iou_t = 0.20, #IoU training threshold
    anchor_t =  4.0, # anchor-multiple thredshold
    fl_gamma = 0.0, # focal loss gamma (efficientDet default gamma= 1.5)
    hsv_h = 0.015, # images HSV-Hue augmentation (fraction)
    hsv_s = 0.7, # images HSV-Saturation augmentation (fraction)
    hsv_v = 0.4, # images HSV-Value augmentation (fraction)
    degrees = 0.0, #images rotatio(+/- deg)
    translate = 0.1, # images translation (+/- fraction)
    scale = 0.25, # image scale(+/- gain)
    shear = 0.0, # image shear(+/- deg)
    perspective = 0.0, # image perspective (+/- fraction), range 0-0.001
    flipup = 0.0, # image flip up-down(probability)
    fliplr = 0.5, # image flip left-right(probability)
    mosaic = 1.0, # image mosaic(probability)
    mixup = 0.0, # image mixup (probability)
    copy_paste = 0.0, # segment copy-paste (probability)  
    )

with open('D:/cowboyoutfits/hyp_config.yaml','w') as f:
    yaml.dump(hyp_yaml, f, default_flow_style=False)

第十二步,调用yolov5的三个模型。有两个使用了transformer,transformer也可以多加层,只不过我电脑不太行,只能加这点。没在服务器上运,大家有条件的可以试试。

model1_yaml = dict(
    nc = 5,  # number of classes
    depth_multiple = 1.33,  # model depth multiple
    width_multiple = 1.25,  # layer channel multiple
    anchors = 3,  # 这里把默认的anchors配置改成了3以启用autoanchor, 获取针对自己训练时的img_size的更优质的anchor size
    
    # YOLOv5 backbone
    backbone =
      # [from, number, module, args]
      [[-1, 1, 'Focus', [64, 3]],  # 0-P1/2
       [-1, 1, 'Conv', [128, 3, 2]],  # 1-P2/4
       [-1, 3, 'C3', [128]],
       [-1, 1, 'Conv', [256, 3, 2]],  # 3-P3/8
       [-1, 9, 'C3', [256]],
       [-1, 1, 'Conv', [512, 3, 2]],  # 5-P4/16
       [-1, 9, 'C3', [512]],
       [-1, 1, 'Conv', [768, 3, 2]],  # 7-P5/32
       [-1, 3, 'C3', [768]],
       [-1, 1, 'Conv', [1024, 3, 2]],  # 9-P6/64
       [-1, 1, 'SPP', [1024, [3, 5, 7]]],
       [-1, 3, 'C3', [1024, 'False']],  # 11
      ],

    # YOLOv5 head
    head =
      [[-1, 1, 'Conv', [768, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 8], 1, 'Concat', [1]],  # cat backbone P5
       [-1, 3, 'C3', [768, 'False']],  # 15

       [-1, 1, 'Conv', [512, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 6], 1, 'Concat', [1]],  # cat backbone P4
       [-1, 3, 'C3', [512, 'False']],  # 19

       [-1, 1, 'Conv', [256, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 4], 1, 'Concat', [1]],  # cat backbone P3
       [-1, 3, 'C3', [256, 'False']],  # 23 (P3/8-small)

       [-1, 1, 'Conv', [256, 3, 2]],
       [[-1, 20], 1, 'Concat', [1]],  # cat head P4
       [-1, 3, 'C3', [512, 'False']],  # 26 (P4/16-medium)

       [-1, 1, 'Conv', [512, 3, 2]],
       [[-1, 16], 1, 'Concat', [1]],  # cat head P5
       [-1, 3, 'C3', [768, 'False']],  # 29 (P5/32-large)

       [-1, 1, 'Conv', [768, 3, 2]],
       [[-1, 12], 1, 'Concat', [1]],  # cat head P6
       [-1, 3, 'C3', [1024, 'False']],  # 32 (P6/64-xlarge)

       [[23, 26, 29, 32], 1, 'Detect', ['nc', 'anchors']],  # Detect(P3, P4, P5, P6)
      ]
    )
with open('D:/cowboyoutfits/yolov5x6.yaml', 'w') as f:
    yaml.dump(model1_yaml, f, default_flow_style=True)

model2_yaml = dict(
    nc = 5,  # number of classes
    depth_multiple = 1.33,  # model depth multiple
    width_multiple = 1.25,  # layer channel multiple
    anchors = 3,  # 这里把默认的anchors配置改成了3以启用autoanchor, 获取针对自己训练时的img_size的更优质的anchor size
    
    # YOLOv5 backbone
    backbone =
      # [from, number, module, args]
      [[-1, 1, 'Focus', [64, 3]],  # 0-P1/2
       [-1, 1, 'Conv', [128, 3, 2]],  # 1-P2/4
       [-1, 3, 'C3', [128]],
       [-1, 1, 'Conv', [256, 3, 2]],  # 3-P3/8
       [-1, 9, 'C3', [256]],
       [-1, 1, 'Conv', [512, 3, 2]],  # 5-P4/16
       [-1, 9, 'C3', [512]],
       [-1, 1, 'Conv', [768, 3, 2]],  # 7-P5/32
       [-1, 3, 'C3', [768]],
       [-1, 1, 'Conv', [1024, 3, 2]],  # 9-P6/64
       [-1, 1, 'SPP', [1024, [3, 5, 7]]],
       [-1, 3, 'C3TR', [1024, 'False']],  # 11  <-------- C3TR() Transformer module
      ],

    # YOLOv5 head
    head =
      [[-1, 1, 'Conv', [768, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 8], 1, 'Concat', [1]],  # cat backbone P5
       [-1, 3, 'C3', [768, 'False']],  # 15

       [-1, 1, 'Conv', [512, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 6], 1, 'Concat', [1]],  # cat backbone P4
       [-1, 3, 'C3', [512, 'False']],  # 19

       [-1, 1, 'Conv', [256, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 4], 1, 'Concat', [1]],  # cat backbone P3
       [-1, 3, 'C3', [256, 'False']],  # 23 (P3/8-small)

       [-1, 1, 'Conv', [256, 3, 2]],
       [[-1, 20], 1, 'Concat', [1]],  # cat head P4
       [-1, 3, 'C3', [512, 'False']],  # 26 (P4/16-medium)

       [-1, 1, 'Conv', [512, 3, 2]],
       [[-1, 16], 1, 'Concat', [1]],  # cat head P5
       [-1, 3, 'C3', [768, 'False']],  # 29 (P5/32-large)

       [-1, 1, 'Conv', [768, 3, 2]],
       [[-1, 12], 1, 'Concat', [1]],  # cat head P6
       [-1, 3, 'C3', [1024, 'False']],  # 32 (P6/64-xlarge)

       [[23, 26, 29, 32], 1, 'Detect', ['nc', 'anchors']],  # Detect(P3, P4, P5, P6)
      ]
    )
with open('D:/cowboyoutfits/yolov5x6-transformer.yaml', 'w') as f:
    yaml.dump(model2_yaml, f, default_flow_style=True)

model3_yaml = dict(
    nc = 5,  # number of classes
    depth_multiple = 1.0,  # model depth multiple
    width_multiple = 1.0,  # layer channel multiple
    anchors = 3,  # 这里把默认的anchors配置改成了3以启用autoanchor, 获取针对自己训练时的img_size的更优质的anchor size
    
    # YOLOv5 backbone
    backbone =
      # [from, number, module, args]
      [[-1, 1, 'Focus', [64, 3]],  # 0-P1/2
       [-1, 1, 'Conv', [128, 3, 2]],  # 1-P2/4
       [-1, 3, 'C3', [128]],
       [-1, 1, 'Conv', [256, 3, 2]],  # 3-P3/8
       [-1, 9, 'C3', [256]],
       [-1, 1, 'Conv', [512, 3, 2]],  # 5-P4/16
       [-1, 9, 'C3TR', [512]],  #   <-------- C3TR() Transformer module
       [-1, 1, 'Conv', [768, 3, 2]],  # 7-P5/32
       [-1, 3, 'C3', [768]],
       [-1, 1, 'Conv', [1024, 3, 2]],  # 9-P6/64
       [-1, 1, 'SPP', [1024, [3, 5, 7]]],
       [-1, 3, 'C3TR', [1024, 'False']],  # 11  <-------- C3TR() Transformer module
      ],

    # YOLOv5 head
    head =
      [[-1, 1, 'Conv', [768, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 8], 1, 'Concat', [1]],  # cat backbone P5
       [-1, 3, 'C3', [768, 'False']],  # 15

       [-1, 1, 'Conv', [512, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 6], 1, 'Concat', [1]],  # cat backbone P4
       [-1, 3, 'C3', [512, 'False']],  # 19

       [-1, 1, 'Conv', [256, 1, 1]],
       [-1, 1, 'nn.Upsample', ['None', 2, 'nearest']],
       [[-1, 4], 1, 'Concat', [1]],  # cat backbone P3
       [-1, 3, 'C3', [256, 'False']],  # 23 (P3/8-small)

       [-1, 1, 'Conv', [256, 3, 2]],
       [[-1, 20], 1, 'Concat', [1]],  # cat head P4
       [-1, 3, 'C3', [512, 'False']],  # 26 (P4/16-medium)

       [-1, 1, 'Conv', [512, 3, 2]],
       [[-1, 16], 1, 'Concat', [1]],  # cat head P5
       [-1, 3, 'C3', [768, 'False']],  # 29 (P5/32-large)

       [-1, 1, 'Conv', [768, 3, 2]],
       [[-1, 12], 1, 'Concat', [1]],  # cat head P6
       [-1, 3, 'C3', [1024, 'False']],  # 32 (P6/64-xlarge)

       [[23, 26, 29, 32], 1, 'Detect', ['nc', 'anchors']],  # Detect(P3, P4, P5, P6)
      ],
    )
with open('D:/cowboyoutfits/yolov5l6-transformer.yaml', 'w') as f:
    yaml.dump(model3_yaml, f, default_flow_style=True)

print("successful")

所有的准备工作都完成了,就差 python trian.py啦,快去看看结果怎么样了

手敲代码300+行,觉得本文对您有帮助的话,不妨给我点个赞,如果还有哪里没看懂,可以在评论区讨论,欢迎大家踊跃发言

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1380633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[vivado ] report_utilization -name

可以Open Synthesiezed或 Implementation 后的Design使用下面的命令&#xff0c;一定要加-name这个option, 后面的utilization_1可以可以自定义。 report_utilization -name utilization_1

【Python机器学习】分类器的不确定估计——预测概率

predict_proba的输出是每个类别的概率&#xff0c;通常比decision_function的输出更容易理解&#xff0c;对于二分类问题&#xff0c;它的形状始终是(n_samples,2)。 import mglearn.tools from sklearn.ensemble import GradientBoostingClassifier from sklearn.datasets im…

从DETR到Mask2Former(3):masked attention的attention map可视化

Mask2Former的论文中有这样一张图&#xff0c;表示masked attenion比cross attention效果要好 那么这个attention map是怎么画出来的&#xff1f; 在mask2attention的源代码中 CrossAttentionLayer这个类中&#xff0c;在forward_post函数中做如下修改&#xff1a; def forwar…

轴组【CAN】

如果有126个轴&#xff0c;你程序里挨个添加轴很麻烦。 可以用轴组批量添加。【数组】 CAN驱动器 0x164 就是下个驱动器 p_CAN主站地址:ADR(IoConfig_Globals.CANopen_Manager_SoftMotion);p_CAN从站地址1:ADR(IoConfig_Globals.DMA882_CAN);p_CAN从站地址2:ADR(IoConfig_Gl…

重磅!OpenAI正式发布,自定义ChatGPT商店!

1月11日凌晨&#xff0c;OpenAI在官网正式发布了&#xff0c;自定义GPT商店&#xff0c;可以帮助用户找到目前最好用、流行的自定义ChatGPT助手。 在2024年第一季度&#xff0c;OpenAI将启动GPT 开发者收入计划。首先&#xff0c;美国地区的开发者将根据用户对其 GPT 的使用情…

HTML--超链接

超链接 作用&#xff1a;点击跳转到相应位置 a标签 语法&#xff1a; <a href"链接地址">文本或图片</a>范例&#xff1a; <!DOCTYPE html> <html> <head> <meta charset"utf-8"/><title>跳转到百度</t…

蓝桥杯单片机进阶教程4——需要分配进程的模块

前言&#xff1a; 【蓝桥杯单片机保姆级教学】 https://www.bilibili.com/video/BV1h3411m7Aw/?p117&share_sourcecopy_web&vd_sourcec4fc67867c5218768e783d04475bc5a2 P117-118 比赛的时候也按照这个顺序来写 一、数码管显示 分析考题 &#xff08;1&#xff09;…

大文件上传切片上传

大文件上传&切片上传 简历中如何写项目经验&技术 切片上传相关面试题 基础实现流程 实现核心&#xff1a;秒传 断点续传 切片 …… 如何实现的 最基本的视图 加上拖拽 加上拖拽事件。监听drop事件&#xff0c;event.dataTransfer.files文件对象。其他dragenter dragove…

odoo17基础培训1-odoo开发基础知识准备以及odoo17开发环境安装

odoo17基础培训 一、odoo开发基础知识准备以及odoo17开发环境安装 1、odoo是什么&#xff1f; 当我介绍客户使用odoo系统作为业务管理平台时&#xff0c;有时会被问到Odoo是什么&#xff1f; 简单点&#xff0c;可以这么说&#xff1a; Odoo是一套完整的系统&#xff0c;是…

Pycharm安装numpy库失败解决办法

一、出现错误&#xff08;以matplotlib为例&#xff09;&#xff1a; 二、解决办法&#xff1a; 方法一&#xff08;失败&#xff09;&#xff1a;PyCharm中有一个安装库的方法是&#xff1a;Settings>>Python Interpreter>>点击右侧的加号 第二个图 失败原因&am…

【开源】基于JAVA语言的固始鹅块销售系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 鹅块类型模块2.3 固始鹅块模块2.4 鹅块订单模块2.5 评论管理模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 鹅块类型表3.2.2 鹅块表3.2.3 鹅块订单表3.2.4 鹅块评论表 四、系统展示五、核心代码5.…

x-cmd pkg | jless - 受 Vim 启发的命令行 JSON 查看器

目录 简介首次用户功能特点类似工具与竞品进一步探索 简介 jless 是一个命令行 JSON 查看器&#xff0c;设计用于读取、探索和搜索 JSON 数据。可以使用它来替代 less 、 jq 、 cat 以及您当前用于查看 JSON 文件的编辑器的任何组合。它是用 Rust 编写的&#xff0c;可以作为单…

确保CentOS系统中的静态HTTP服务器的数据安全

确保CentOS系统中的静态HTTP服务器的数据安全是一项重要的任务&#xff0c;它有助于保护网站免受未经授权的访问、数据泄露和其他安全威胁。以下是一些关键步骤和最佳实践&#xff0c;以确保CentOS系统中静态HTTP服务器的数据安全&#xff1a; 限制访问权限确保只有授权用户可…

Python爬虫---scrapy shell 调试

Scrapy shell是Scrapy提供的一个交互式shell工具&#xff0c;它可以帮助我们进行爬虫的开发和调试。可以使用它来测试xpath或css表达式&#xff0c;查看它们是如何工作的&#xff0c;以及它们从你试图抓取的网页中提取的数据。它允许你在编写spider时交互地测试表达式&#xff…

JFinal学生信息管理系统

JFinal学生信息管理系统 项目地址&#xff1a;mendianyu/StudentManage: JFinal学生信息管理系统 (github.com) 环境介绍&#xff1a; IDE&#xff1a;IDEA 2021.2.3 jdk:1.8 maven:3.6.3 项目介绍&#xff1a;JFinal框架实现的学生信息管理系统&#xff0c;完成简单的学生信…

MATLAB | 龙年大吉,使用MATLAB绘制会动的中国风神龙

hey各位好久不见&#xff0c;龙年到了&#xff0c;这期画一期配色非常中国风的龙&#xff0c;这个造型的龙参考了某些html绘制龙的视频&#xff0c;但是由于html版全网都是也不咋给代码和代码出处&#xff0c;因此自己写了个MATLAB版本&#xff1a; 可以看到还是非常酷炫的&…

Vulnhub靶机:driftingblues 3

一、介绍 运行环境&#xff1a;Virtualbox 攻击机&#xff1a;kali&#xff08;10.0.2.15&#xff09; 靶机&#xff1a;driftingblues3&#xff08;10.0.2.19&#xff09; 目标&#xff1a;获取靶机root权限和flag 靶机下载地址&#xff1a;https://www.vulnhub.com/entr…

利用C语言实现输出杨辉三角的前10行

杨辉三角的特点 第一列都为1&#xff0c;对角线为1 第x行第x列为1 第几行就有几个元素 从第三行开始,第二列的元素等于第二行的第一列元素第二列元素之和(排除从第三行开始的首和尾元素) //用C语言实现打印出10行杨辉三角 #include<stdio.h>int main(){int a[10][10];//…

膜结构球形影院为观众打造观影新体验

在数字科技快速发展的当下&#xff0c;轻空间公司打破传统影院的束缚&#xff0c;领航未来娱乐体验的创新浪潮。膜结构球形影院问世&#xff0c;它不仅仅是一个娱乐场所&#xff0c;更是一场極致沉浸感的感官之旅&#xff0c;为观众带来震撼性的视听冲击。 沉浸式体验的新纪元 …

【HuggingFace Transformer库学习笔记】基础组件学习:Trainer

基础组件学习——Trainer 导入包 from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from datasets import load_dataset加载数据集 dataset load_dataset("csv", data_files"./ChnSentiCorp_htl_al…