竞赛保研 基于深度学习的视频多目标跟踪实现

news2024/9/28 17:34:00

文章目录

  • 1 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的视频多目标跟踪实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新

 if FLAGS.mode == 'eager_tf':
        # Eager mode is great for debugging
        # Non eager graph mode is recommended for real training
        avg_loss = tf.keras.metrics.Mean('loss', dtype=tf.float32)
        avg_val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1379418.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Trans论文复现:基于数据驱动的新能源充电站两阶段规划方法程序代码!

适用平台:MatlabYalmipCplex/Gurobi; 文章提出了一种电动汽车充电站的两阶段规划方法,第一阶段通过蒙特卡洛法模拟充电车辆需求和电池充放电数据来确定充电站位置;第二阶段通过数据驱动的分布鲁棒优化方法优化充电站的新能源和电池…

Jenkins配置发邮件

Jenkins配置发邮件 账号设置 首先这个邮箱账号要支持发邮件,QQ邮箱开通SMTP即可之后要认证 企业微信邮箱 开启IMAP/SMTP服务开启POP/SMTP服务 无论是企业微信邮箱还是QQ邮箱都是SSL协议,在下面的配置中我都会勾选上!!&#xff0…

Nginx配置jks格式证书,升级https

通常在给服务器升级https,需要在nginx上配置域名对应的https证书,nginx通常配置的是crt和key格式的证书。最近遇到有人提供了jks格式的证书,查阅了几个资料都是需要先将jks转为p12格式,然后再将p12转为crt格式。这里记录一下相关过…

【自控实验】3. 带有饱和非线性环节控制系统相平面分析

本科课程实验报告,有太多公式和图片了,干脆直接转成图片了 仅分享和记录,不保证全对 实验内容: 有无非线性环节的相轨迹对比,并求超调量。 在输入单位阶跃信号Xsr时,用示波器观察和记录系统输入饱和非线…

复选框QCheckBox和分组框QGroupBox

1. 复选框:QCheckBox 实例化 //实例化 // QCheckBox* checkBox new QCheckBox("是否同意该条款",this);QCheckBox* checkBox new QCheckBox(this);1.1 代码实现 1.1.1 复选框的基本函数 复选框选中状态的参数 Qt::Unchecked //未选中状态 Qt::Part…

Java字符串拼接常用方法总结

使用场景:用某个分隔符拼接字符串 下边是我使用过的几种方式废话不多说,直接上代码初始数据 1.使用流2.StringBuilder3.[StringJoiner](https://blog.csdn.net/qq_43417581/article/details/126076152?ops_request_misc%257B%2522request%255Fid%2522%2…

win11下载Hbuliderx 安装闪退解决教程+安装包分享

在官网下载 目录 在官网下载 出现闪退 下载失败 2.2. 最终在百度网盘里下载了历史版本 2.3. 然后解压文件 2.4. 双击打开 2.5. 安装成功 出现闪退 下载失败 结果下载失败,一下子弹出的下载框就会闪退 2.2. 最终在百度网盘里下载了历史版本 下载的网盘链接: …

搭建个人智能家居 2 -安装ESPHome

搭建个人智能家居 2 -安装ESPHome 前言ESPHome Linux平台windows平台总结 前言 上一篇文章我们演示了多个平台下面搭建HomeAssistant,可能有一些小伙伴在安装、运行HomeAssistant OS后,打开HomeAssistant的控制台时会出现下面图片显示的问题 这一般是本…

Kibana:使用反向地理编码绘制自定义区域地图

Elastic 地图(Maps)附带预定义区域,可让你通过指标快速可视化区域。 地图还提供了绘制你自己的区域地图的功能。 你可以使用任何您想要的区域数据,只要你的源数据包含相应区域的标识符即可。 但是,当源数据不包含区域…

pytorch学习笔记(十)

一、损失函数 举个例子 比如说根据Loss提供的信息知道,解答题太弱了,需要多训练训练这个模块。 Loss作用:1.算实际输出和目标之间的差距 2.为我们更新输出提供一定的依据(反向传播) 看官方文档 每个输入输出相减取…

Springboot + vue 停车管理系统

Springboot vue 停车管理系统 项目描述 系统包含用户和管理员两个角色 用户:登录、注册、个人中心、预定停车位、缴费信息 管理员:登录、用户信息管理、车位信息管理、车位费用管理、停泊车辆管理、车辆进出管理、登录日志查询 运行环境 jdk1.8 idea …

畸变矫正-深度学习相关论文学习

目录 DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction SimFIR: A Simple Framework for Fisheye Image Rectification with Self-supervised Representation Learning Model-Free Distortion Rectification Framework Bridged by Di…

UCB Data100:数据科学的原理和技巧:第十一章到第十二章

十一、恒定模型、损失和转换 原文:Constant Model, Loss, and Transformations 译者:飞龙 协议:CC BY-NC-SA 4.0 学习成果 推导出在 MSE 和 MAE 成本函数下恒定模型的最佳模型参数。 评估 MSE 和 MAE 风险之间的差异。 理解变量线性化的必要…

Java中锁的解决方案

前言 在上一篇文章中,介绍了什么是锁,以及锁的使用场景,本文继续给大家继续做深入的介绍,介绍JAVA为我们提供的不同种类的锁。 JAVA为我们提供了种类丰富的锁,每种锁都有不同的特性,锁的使用场景也各不相…

【C】volatile 关键字

目录 volatile1)基本概念2)用途:禁止编译器优化3)总结 volatile 1)基本概念 const是C语言的一个关键字。 const用于告诉编译器相应的变量可能会在程序的控制之外被修改,因此编译器不应该对其进行优化。 …

mac 使用brew卸载node

1.查看当前的node版本 node -v 2.查看使用brew 安装的版本,可以看到本机装了14、16、18版本的node brew search node 3.卸载node brew uninstall node版本号 --force 如分别删除14、16、18版本的node命令如下 brew uninstall node14 --force brew uninstall no…

【排序篇1】插入排序、希尔排序

目录 一、插入排序二、希尔排序 一、插入排序 思路: 插入排序就像玩扑克牌,抽出一张牌作为比较的元素,与前面的牌依次进行比较,小于继续往前比较,大于等于停下插入到当前位置。 图示: void InsertSort(…

高效便捷的远程管理利器——Royal TSX for Mac软件介绍

Royal TSX for Mac是一款功能强大、操作便捷的远程管理软件。无论是远程桌面、SSH、VNC、Telnet还是FTP,用户都可以通过Royal TSX轻松地远程连接和管理各种服务器、计算机和网络设备。 Royal TSX for Mac提供了直观的界面和丰富的功能,让用户能够快速便…

RT-Thread I/O设备模型

I/O设备模型 绝大部分的嵌入式系统都包括一些I/O(Input/Output,输入/输出)设备,例如仪器上的数据显示屏、工业设备上的串口通信、数据采集设备上用于保存数据的Flash或SD卡,以及网络设备的以太网接口等,都…

openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态

文章目录 openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态195.1 分析查询语句运行状态195.1.1 问题现象195.1.2 处理办法 openGauss学习笔记-195 openGauss 数据库运维-常见故障定位案例-分析查询语句运行状态 195.1 分析查询语句运行状态…