【python,机器学习,nlp】RNN循环神经网络

news2025/4/19 14:00:00

RNN(Recurrent Neural Network),中文称作循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。

因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言,语音等进行很好的处理,广泛应用于NLP领域的各项任务,如文本分类,情感分析,意图识别,机器翻译等.

RNN模型的分类:

这里我们将从两个角度对RNN模型进行分类.第一个角度是输入和输出的结构,第二个角度是RNN的内部构造.

按照输入和输出的结构进行分类:

N vs N-RNN

它是RNN最基础的结构形式,最大的特点就是:输入和输出序列是等长的.由于这个限制的存在,使其适用范围比较小,可用于生成等长度的合辙诗句.

N vs 1-RNN

有时候我们要处理的问题输入是一个序列,而要求输出是一个单独的值而不是序列,要在最后一个隐层输出h上进行线性变换。

大部分情况下,为了更好的明确结果,还要使用sigmoid或者softmax进行处理.这种结构经常被应用在文本分类问题上.

1 vs N-RNN

我们最常采用的一种方式就是使该输入作用于每次的输出之上.这种结构可用于将图片生成文字任务等.

N vs M-RNN

这是一种不限输入输出长度的RNN结构,它由编码器和解码器两部分组成,两者的内部结构都是某类RNN,它也被称为seq2seq架构。

输入数据首先通过编码器,最终输出一个隐含变量c,之后最常用的做法是使用这个隐含变量c作用在解码器进行解码的每一步上,以保证输入信息被有效利用。

按照RNN的内部构造进行分类:

传统RNN

内部计算函数

tanh的作用: 用于帮助调节流经网络的值,tanh函数将值压缩在﹣1和1之间。

传统RNN的优势:
由于内部结构简单,对计算资源要求低,相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多,在短序列任务上性能和效果都表现优异。

传统rnn的缺点:
传统RNN在解决长序列之间的关联时,通过实践,证明经典RNN表现很差,原因是在进行反向传播的时候,过长的序列导致梯度的计算异常,发生梯度消失或爆炸。

LSTM

LSTM (Long Short-Term Memory)也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象,同时LSTM的结构更复杂。

LSTM缺点:由于内部结构相对较复杂,因此训练效率在同等算力下较传统RNN低很多.

LSTM优势:LSTM的门结构能够有效减缓长序列问题中可能出现的梯度消失或爆炸,虽然并不能杜绝这种现象,但在更长的序列问题上表现优于传统RNN.

 

它的核心结构可以分为四个部分去解析:

遗忘门

与传统RNN的内部结构计算非常相似,首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接, 得到[x(t), h(t-1)],然后通过一个全连接层做变换,最后通过sigmoid函数(变化到【0,1】)进行激活得到f(t),我们可以将f(t)看作是门值,好比一扇门开合的大小程度,门值都将作用在通过该扇门的张量,遗忘门门值将作用的上一层的细胞状态上,代表遗忘过去的多少信息,又因为遗忘门门值是由x(t), h(t-1)计算得来的,因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息.

输入门

输入门的计算公式有两个,第一个就是产生输入门门值的公式,它和遗忘门公式几乎相同,区别只是在于它们之后要作用的目标上,这个公式意味着输入信息有多少需要进行过滤.输入门的第二个公式是与传统RNN的内部结构计算相同.对于LSTM来讲,它得到的是当前的细胞状态,而不是像经典RNN一样得到的是隐含状态.

细胞状态

我们看到输入门的计算公式有两个,第一个就是产生输入门门值的公式,它和遗忘门公式几乎相同,区别只是在于它们之后要作用的目标上.这个公式意味着输入信息有多少需要进行过滤.输入门的第二个公式是与传统RNN的内部结构计算相同.对于LSTM来讲,它得到的是当前的细胞状态,而不是像经典RNN一样得到的是隐含状态。

输出门

输出门部分的公式也是两个,第一个即是计算输出门的门值,它和遗忘门,输入门计算方式相同.第二个即是使用这个门值产生隐含状态h(t),他将作用在更新后的细胞状态C(t)上,并做tanh激活,最终得到h(t)作为下一时间步输入的一部分.整个输出门的程,就是为了产生隐含状态h(t)。

Bi-LSTM

Bi-LSTM即双向LSTM,它没有改变LSTM本身任何的内部结构,只是将LSTM应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出

GRU

GRU(Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象.同时它的结构和计算要比LSTM 更简单。

GRU的优势:GRU和LSTM作用相同,在捕捉长序列语义关联时,能有效抑制梯度消失或爆炸,效果都优于传统rnn且计算复杂度相比lstm要小.

GRU的缺点:GRU仍然不能完全解决梯度消失问题,同时其作用RNN的变体,有着RNN结构本身的一大弊端,即不可并行计算,这在数据量和模型体量逐步增大的未来,是RNN发展的关键瓶颈

它的核心结构可以分为两个部分去解析:

更新门 
重置门

Bi-GRU

Bi-GRU与Bi-LSTM的逻辑相同,都是不改变其内部结构,而是将模型应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出.具体参见上小节中的Bi-LSTM。

注意力机制

注意力机制是注意力计算规则能够应用的深度学习网络的载体,同时包括一些必要的全连接层以及相关张量处理,使其与应用网络融为一体.使自注意力计算规则的注意力机制称为自注意力机制.

注意力计算规则

它需要三个指定的输入Q(query), K(key), V(value), 然后通过计算公式得到注意力的结果,这个结果代表query在key和value作用下的注意力表示.当输入的Q=K=V时,称作自注意力计算规则.

注意力机制的作用

在解码器端的注意力机制: 能够根据模型目标有效的聚焦编码器的输出结果,当其作为解码器的输入时提升效果,改善以往编码器输出是单一定长张量,无法存储过多信息的情况.

在编码器端的注意力机制:主要解决表征问题,相当于特征提取过程,得到输入的注意力表示.一般使用自注意力(self-attention).

注意力机制实现步骤

第一步:根据注意力计算规则,对Q,K,V进行相应的计算.

第二步:根据第一步采用的计算方法,如果是拼接方法,则需要将Q与第二步的计算结果再进行拼接,如果是转置点积,一般是自注意力,Q与V相同,则不需要进行与Q的拼接.

第三步:最后为了使整个attention机制按照指定尺寸输出,使用线性层作用在第二步的结果上做一个线性变换,得到最终对Q的注意力表示.

代码实现

传统模型

import torch
import torch.nn as nn

"""
nn.RNN类初始化主要参数解释
input_size:输入张量x中特征维度的大小
hidden_size:隐层张量h中特征维度的大小
num_layers: 隐含层的数量.
nonlinearity: 激活函数的选择,默认是tanh.
"""
rnn=nn.RNN(input_size=5,hidden_size=6,num_layers=1)

"""
设定输入的张量x
第一个参数:sequence_length(输入序列的长度)
第二个参数:batch_size(批次的样本数)
第三个参数:input_size(输入张量x的维度)
"""
input=torch.randn(1,3,5)
"""
设定初始化的h0
第一个参数:num_layers *num_directions(层数*网络方向数)
第二个参数:batch_size(批次的样本数)
第三个参数:hiddeh_size(隐藏层的维度)
"""
h0=torch.randn(1,3,6)

"""
nn.RNN类实例化对象主要参数解释
input: 输入张量x
h0:初始化的隐层张量h
"""
output,hn=rnn(input,h0)

LSTM模型

import torch
import torch.nn as nn

"""
nn.LSTM类初始化主要参数解释:
input_size: 输入张量x中特征维度的大小.
hidden_size: 隐层张量h中特征维度的大小.
num_layers: 隐含层的数量.
bidirectional: 是否选择使用双向LSTM,如果为True,则使用;默认不使用.
"""
rnn=nn.LSTM(input_size=5,hidden_size=6,num_layers=2)

"""
设定输入的张量x
第一个参数:sequence_length(输入序列的长度)
第二个参数:batch_size(批次的样本数)
第三个参数:input_size(输入张量x的维度)
"""
input=torch.randn(1,3,5)
"""
设定初始化的h0,c0
第一个参数:num_layers *num_directions(层数*网络方向数)
第二个参数:batch_size(批次的样本数)
第三个参数:hiddeh_size(隐藏层的维度)
"""
h0=torch.randn(2,3,6)
c0=torch.randn(2,3,6)

"""
nn.LSTM类实例化对象主要参数解释
input: 输入张量x
h0:初始化的隐层张量h.
cO:初始化的细胞状态张量c.
"""
output,(hn,cn)=rnn(input,(h0,c0))

GRU模型

import torch
import torch.nn as nn

"""
nn.GRU类初始化主要参数解释
Input_size: 输入张量x中特征维度的大小
hidden_size:隐层张量h中特征维度的大小
num_layers:隐含层的数量
bidirectional: 是否选择使用双向LSTM,如果为True,则使用;默认不使用
"""
rnn=nn.GRU(input_size=5,hidden_size=6,num_layers=2)

"""
设定输入的张量x
第一个参数:sequence_length(输入序列的长度)
第二个参数:batch_size(批次的样本数)
第三个参数:input_size(输入张量x的维度)
"""
input=torch.randn(1,3,5)
"""
设定初始化的h0
第一个参数:num_layers *num_directions(层数*网络方向数)
第二个参数:batch_size(批次的样本数)
第三个参数:hiddeh_size(隐藏层的维度)
"""
h0=torch.randn(2,3,6)

"""
nn.GRU类实例化对象主要参数解释
input: 输入张量x.
h0:初始化的隐层张量h.
"""
output,hn=rnn(input,h0)

注意力模型

import torch
import torch.nn as nn
import torch.nn.functional as F

#建立attn类
class Attn(nn.Module):
    def __init__(self, query_size,key_size,value_size1,value_size2,output_size):
        """_summary_

        Args:
            query_size (_type_): 代表的是Q的最后一个维度
            key_size (_type_): 代表的K的最后一个维度
            value_size1 (_type_): 代表value的导数第二维大小
            value_size2 (_type_): 代表value的倒数第一维大小
            output_size (_type_): 代表输出的最后一个维度的大小
        """
        super(Attn, self).__init__()
        self.query_size = query_size
        self.key_size = key_size
        self.value_size1 = value_size1
        self.value_size2 = value_size2
        self.output_size = output_size
        
        # 初始化注意力机制
        self.attn=nn.Linear(self.query_size+self.key_size,self.value_size1)
        self.attn_combine=nn.Linear(self.query_size+self.value_size2,self.output_size)
        
    def forward(self,query,key,value):
        """_summary_

        Args:
            query (_type_): 代表Q
            key (_type_): 代表K
            value (_type_): 代表V

        Returns:
            _type_: 返回注意力机制的输出
        """
        # 计算注意力权重
        attn_weights=F.softmax(self.attn(torch.cat((query[0],key[0]),1)),dim=1)
        attn_applied=torch.bmm(attn_weights.unsqueeze(0),value)
        
        # 计算注意力机制的输出
        output=torch.cat((query[0],attn_applied[0]),1)
        
        output=self.attn_combine(output).unsqueeze(0)
        
        return output,attn_weights

query_size=32
key_size=32
value_size1=32
value_size2=64
output_size=64

#初始化attn
attn=Attn(query_size,key_size,value_size1,value_size2,output_size)
#使用attn实例
Q=torch.randn(1,1,32)
K=torch.randn(1,1,32)
V=torch.randn(1,32,64)
output=attn(Q,K,V)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1376753.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web实战丨基于Django与HTML的新闻发布系统

文章目录 写在前面项目简介项目框架实验内容安装依赖库1.创建项目2.系统配置3.配置视图文件4.配置模型文件5.配置管理员文件6.配置模板文件7.创建数据库8.启动项目 运行结果写在后面 写在前面 本期内容:基于Django与HTML的简单新闻发布系统。 项目需求&#xff1a…

linux高级篇基础理论十一(GlusterFS)

♥️作者:小刘在C站 ♥️个人主页: 小刘主页 ♥️不能因为人生的道路坎坷,就使自己的身躯变得弯曲;不能因为生活的历程漫长,就使求索的 脚步迟缓。 ♥️学习两年总结出的运维经验,以及思科模拟器全套网络实验教程。专栏:云计算技…

以用户为导向,可定制化高精度直线模组降本增效正当时

近年来,随着工业自动化转型升级不断提速,市场对优质直线模组的需求量直线上升,而直线模组拥有单体运动速度快、重复定位精度高、本体质量轻、占设备空间小、寿命长等优势,在机械设备领域备受青睐。作为深耕工业自动化产品市场多年…

【Linux驱动】Linux的中断系统 | 中断的重要数据结构

🐱作者:一只大喵咪1201 🐱专栏:《Linux驱动》 🔥格言:你只管努力,剩下的交给时间! 目录 🏀Linux系统的中断⚽中断分类软中断和硬中断中断的上半部和下半部 ⚽tasklet⚽工…

【提示学习论文六】MaPLe: Multi-modal Prompt Learning论文原理

文章目录 MaPLe: Multi-modal Prompt Learning 多模式提示学习文章介绍动机MaPLe:Multi-modal Prompt Learning 模型结构1、Deep Language Prompting 深度语言提示2、Deep Vision Prompting 深度视觉提示3、Vision Language Prompt Coupling 视觉语言提示耦合提示耦合过程 实验…

xtu oj 1520 方程组

题目描述 求 ,其中x≤y 的整数解。 输入格式 第一行是一个整数T (1≤T≤1000),表示样例的个数。 第二行是两个整数n, n∈[−109,109]和m, m∈[0,109]。 输出格式 依次输出一个样例的结果。 输出一行,为两个整数,之间用一个空格隔开;如果…

Word·VBA实现邮件合并

目录 制作邮件合并模板VBA实现邮件合并举例 之前写过的一篇使用《python实现word邮件合并》,本文为vba实现方法 制作邮件合并模板 域名可以使用中文,最终完成的word模板,wps操作步骤类似 VBA实现邮件合并 在Excel启用宏的工作表运行以下代…

Delete `␍`eslint(prettier/prettier)

一、问题: 今天下午配置eslint和prettier 时,频频报错:Delete ␍eslint(prettier/prettier),vscode全页面爆红。 经过多次尝试与试验后,最终多种方式结合解决了这个问题。 二、报错原因是: 安装了prett…

德思特方案 | 德思特大电流注入测试方案,为电子设备打造电磁干扰“防火墙”

来源:德思特测试测量 德思特方案 | 德思特大电流注入测试方案,为电子设备打造电磁干扰“防火墙” 原文链接:https://mp.weixin.qq.com/s/xyAnXRThBnwa1L3FOuDkDA 欢迎关注虹科,为您提供最新资讯! 简介 在当前电子技…

计算机毕业设计----Springboot农业物资管理系统

项目介绍 农业物资管理系统,管理员可以对角色进行配置,分配用户角色; 主要功能包含:登录、注册、修改密码、零售出库、零售退货、采购订单管理、采购入库管理、采购退货管理、销售管理、财务管理、报表管理、物资管理、基本资料管…

容器扫描Trivy及Trivy-db数据库研究

trivy介绍 Trivy是一个镜像容器扫描工具,用于扫描漏洞和配置错误。 它是一款相当全面且多功能的安全扫描器,支持多种扫描目标,能够弥补市面上常见Web 漏洞扫描工具的不足。 Trivy 可以轻松地通过安装并将二进制文件添加到项目中,…

【qt】opencv导入pro

我的sdk0文件夹在opencv003项目下,使用opencv451 INCLUDEPATH $$PWD/sdk0/opencv/includeCONFIG(release, debug|release) {LIBS -L$$PWD/sdk0/opencv/lib/ -lopencv_world451opencv.files $$PWD/sdk0/opencv/bin/opencv_world451.dllopencv.path $$OUT_PWD/Re…

基于SpringBoot的医护人员排班系统(代码+数据库+文档)

🍅点赞收藏关注 → 私信领取本源代码、数据库🍅 本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目 希望你能有所收获,少走一些弯路。🍅关注我不迷路🍅一、研究背景 1.1 研究背景 随…

【Linux进程】查看进程fork创建进程

目录 前言 1. 查看进程 2. 通过系统调用创建进程-fork初识 总结 前言 你有没有想过在使用Linux操作系统时,后台运行的程序是如何管理的?在Linux中,进程是一个非常重要的概念。本文将介绍如何查看当前运行的进程,并且讨论如何使用…

概率论与数理统计-第7章 假设检验

假设检验的基本概念 二、假设检验的基本思想 假设检验的基本思想实质上是带有某种概率性质的反证法,为了检验一个假设H0,是否正确,首先假定该假设H0正确,然后根据抽取到的样本对假设H0作出接受或拒绝的决策,如果样本观察值导致了…

【深入挖掘Java技术】「源码原理体系」盲点问题解析之HashMap工作原理全揭秘(上)

HashMap工作原理全揭秘 — 核心源码解析 知识盲点概念介绍数据结构数组链表数组VS链表哈希表不同JVM版本HashMap的展现形式 HashMap VS HashTable特性区别对比 hashcodehashCode的作用equals方法和hashcode的关系key为null怎么办执行步骤 核心参数容量探讨负载因子探讨加载因子…

基于pytorch的循环神经网络情感分析系统

任务目标 基于给定数据集,进行数据预处理,搭建以LSTM为基本单元的模型,以Adam优化器对模型进行训练,使用训练后的模型进行预测并计算预测分类的准确率。 数据简介 IMDB数据集是一个对电影评论标注为正向评论与负向评论的数据集…

【Android开发】不同Activity之间的数据回传实例(一)摘桃子游戏

一、功能介绍 该项目实现的功能主要有: 在首页显示一个按钮点击该按钮跳转到桃园页面在桃园页面,点击桃子会弹窗显示摘到几个桃子,同时被点击桃子消失,总桃子数1点击退出桃园会返回首页,首页桃子数会根据点击的桃子数…

伐木工 - 华为OD统一考试

OD统一考试 题解: Java / Python / C++ 题目描述 一根X米长的树木,伐木工切割成不同长度的木材后进行交易,交易价格为每根木头长度的乘积。规定切割后的每根木头长度都为正整数,也可以不切割,直接拿整根树木进行交易。请问伐木工如何尽量少的切割,才能使收益最大化? 输…

一、docker的安装与踩坑

目录 一、安装docker(centos7安装docker)1.安装环境前期准备2.参考官网安装前准备3.参考官网安装步骤开始安装docker4.运行首个容器 二、安装一些软件的踩坑1.启动docker踩坑2.安装mysql踩坑3.罕见问题 三、关于我的虚拟机 一、安装docker(ce…