数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?

news2025/1/10 10:17:51

目录

  • 前言
  • 算法解析
  • 总结引申

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信?

垃圾短信和骚扰电话,我想每个人都收到过吧?买房、贷款、投资理财、开发票,各种垃圾短信和骚扰电话,不胜其扰。如果你是一名手机应用开发工程师,让你实现一个简单的垃圾短信过滤功能以及骚扰电话拦截功能,该用什么样的数据结构和算法实现呢?

算法解析

实际上,解决这个问题并不会涉及很高深的算法。今天,我就带你一块看下,如何利用简单的数据结构和算法,解决这种看似非常复杂的问题。

  1. 基于黑名单的过滤器

我们可以维护一个骚扰电话号码和垃圾短信发送号码的黑名单。这个黑名单的收集,有很多途径,比如,我们可以从一些公开的网站上下载,也可以通过类似“360 骚扰电话拦截”的功能,通过用户自主标记骚扰电话来收集。对于被多个用户标记,并且标记个数超过一定阈值的号码,我们就可以定义为骚扰电话,并将它加入到我们的黑名单中。

如果黑名单中的电话号码不多的话,我们可以使用散列表、二叉树等动态数据结构来存储,对内存的消耗并不会很大。如果我们把每个号码看作一个字符串,并且假设平均长度是 16 个字节,那存储 50 万个电话号码,大约需要 10MB 的内存空间。即便是对于手机这样的内存有限的设备来说,这点内存的消耗也是可以接受的。

但是,如果黑名单中的电话号码很多呢?比如有 500 万个。这个时候,如果再用散列表存储,就需要大约 100MB 的存储空间。为了实现一个拦截功能,耗费用户如此多的手机内存,这显然有点儿不合理。

上一节我们讲了,布隆过滤器最大的特点就是比较省存储空间,所以,用它来解决这个问题再合适不过了。如果我们要存储 500 万个手机号码,我们把位图大小设置为 10 倍数据大小,也就是 5000 万,那也只需要使用 5000 万个二进制位(5000 万 bits),换算成字节,也就是不到 7MB 的存储空间。比起散列表的解决方案,内存的消耗减少了很多。

实际上,我们还有一种时间换空间的方法,可以将内存的消耗优化到极致。

我们可以把黑名单存储在服务器端上,把过滤和拦截的核心工作,交给服务器端来做。手机端只负责将要检查的号码发送给服务器端,服务器端通过查黑名单,判断这个号码是否应该被拦截,并将结果返回给手机端。

用这个解决思路完全不需要占用手机内存。不过,有利就有弊。我们知道,网络通信是比较慢的,所以,网络延迟就会导致处理速度降低。而且,这个方案还有个硬性要求,那就是只有在联网的情况下,才能正常工作。

基于黑名单的过滤器我就讲完了,不过,你可能还会说,布隆过滤器会有判错的概率呀!如果它把一个重要的电话或者短信,当成垃圾短信或者骚扰电话拦截了,对于用户来说,这是无法接受的。你说得没错,这是一个很大的问题。不过,我们现在先放一放,等三种过滤器都讲完之后,我再来解答。

  1. 基于规则的过滤器

刚刚讲了一种基于黑名单的垃圾短信过滤方法,但是,如果某个垃圾短信发送者的号码并不在黑名单中,那这种方法就没办法拦截了。所以,基于黑名单的过滤方式,还不够完善,我们再继续看一种基于规则的过滤方式。

对于垃圾短信来说,我们还可以通过短信的内容,来判断某条短信是否是垃圾短信。我们预先设定一些规则,如果某条短信符合这些规则,我们就可以判定它是垃圾短信。实际上,规则可以有很多,比如下面这几个:

  • 短信中包含特殊单词(或词语),比如一些非法、淫秽、反动词语等;
  • 短信发送号码是群发号码,非我们正常的手机号码,比如 +60389585;
  • 短信中包含回拨的联系方式,比如手机号码、微信、QQ、网页链接等,因为群发短信的号码一般都是无法回拨的;
  • 短信格式花哨、内容很长,比如包含各种表情、图片、网页链接等;
  • 符合已知垃圾短信的模板。垃圾短信一般都是重复群发,对于已经判定为垃圾短信的短信,我们可以抽象成模板,将获取到的短信与模板匹配,一旦匹配,我们就可以判定为垃圾短信。

当然,如果短信只是满足其中一条规则,如果就判定为垃圾短信,那会存在比较大的误判的情况。我们可以综合多条规则进行判断。比如,满足 2 条以上才会被判定为垃圾短信;或者每条规则对应一个不同的得分,满足哪条规则,我们就累加对应的分数,某条短信的总得分超过某个阈值,才会被判定为垃圾短信。

不过,我只是给出了一些制定规则的思路,具体落实到执行层面,其实还有很大的距离,还有很多细节需要处理。比如,第一条规则中,我们该如何定义特殊单词;第二条规则中,我们该如何定义什么样的号码是群发号码等等。限于篇幅,我就不一一详细展开来讲了。我这里只讲一下,如何定义特殊单词?

如果我们只是自己拍脑袋想,哪些单词属于特殊单词,那势必有比较大的主观性,也很容易漏掉某些单词。实际上,我们可以基于概率统计的方法,借助计算机强大的计算能力,找出哪些单词最常出现在垃圾短信中,将这些最常出现的单词,作为特殊单词,用来过滤短信。

不过这种方法的前提是,我们有大量的样本数据,也就是说,要有大量的短信(比如 1000 万条短信),并且我们还要求,每条短信都做好了标记,它是垃圾短信还是非垃圾短信。

我们对这 1000 万条短信,进行分词处理(借助中文或者英文分词算法),去掉“的、和、是”等没有意义的停用词(Stop words),得到 n 个不同的单词。针对每个单词,我们统计有多少个垃圾短信出现了这个单词,有多少个非垃圾短信会出现这个单词,进而求出每个单词出现在垃圾短信中的概率,以及出现在非垃圾短信中的概率。如果某个单词出现在垃圾短信中的概率,远大于出现在非垃圾短信中的概率,那我们就把这个单词作为特殊单词,用来过滤垃圾短信。

在这里插入图片描述

  1. 基于概率统计的过滤器

基于规则的过滤器,看起来很直观,也很好理解,但是它也有一定的局限性。一方面,这些规则受人的思维方式局限,规则未免太过简单;另一方面,垃圾短信发送者可能会针对规则,精心设计短信,绕过这些规则的拦截。对此,我们再来看一种更加高级的过滤方式,基于概率统计的过滤方式。

这种基于概率统计的过滤方式,基础理论是基于朴素贝叶斯算法。为了让你更好地理解下面的内容,我们先通过一个非常简单的例子来看下,什么是朴素贝叶斯算法?

假设事件 A 是“小明不去上学”,事件 B 是“下雨了”。我们现在统计了一下过去 10 天的下雨情况和小明上学的情况,作为样本数据。

在这里插入图片描述
我们来分析一下,这组样本有什么规律。在这 10 天中,有 4 天下雨,所以下雨的概率 P(B)=4/10。10 天中有 3 天,小明没有去上学,所以小明不去上学的概率 P(A)=3/10。在 4 个下雨天中,小明有 2 天没去上学,所以下雨天不去上学的概率 P(A|B)=2/4。在小明没有去上学的 3 天中,有 2 天下雨了,所以小明因为下雨而不上学的概率是 P(B|A)=2/3。实际上,这 4 个概率值之间,有一定的关系,这个关系就是朴素贝叶斯算法,我们用公式表示出来,就是下面这个样子。

在这里插入图片描述
朴素贝叶斯算法是不是非常简单?我们用一个公式就可以将它概括。弄懂了朴素贝叶斯算法,我们再回到垃圾短信过滤这个问题上,看看如何利用朴素贝叶斯算法,来做垃圾短信的过滤。

基于概率统计的过滤器,是基于短信内容来判定是否是垃圾短信。而计算机没办法像人一样理解短信的含义。所以,我们需要把短信抽象成一组计算机可以理解并且方便计算的特征项,用这一组特征项代替短信本身,来做垃圾短信过滤。

我们可以通过分词算法,把一个短信分割成 n 个单词。这 n 个单词就是一组特征项,全权代表这个短信。因此,判定一个短信是否是垃圾短信这样一个问题,就变成了,判定同时包含这几个单词的短信是否是垃圾短信。

不过,这里我们并不像基于规则的过滤器那样,非黑即白,一个短信要么被判定为垃圾短信、要么被判定为非垃圾短息。我们使用概率,来表征一个短信是垃圾短信的可信程度。如果我们用公式将这个概率表示出来,就是下面这个样子:

在这里插入图片描述
尽管我们有大量的短信样本,但是我们没法通过样本数据统计得到这个概率。为什么不可以呢?你可能会说,我只需要统计同时包含 W1​,W2​,W3​,…,Wn​ 这 n 个单词的短信有多少个(我们假设有 x 个),然后看这里面属于垃圾短信的有几个(我们假设有 y 个),那包含 W1​,W2​,W3​,…,Wn​ 这 n 个单词的短信是垃圾短信的概率就是 y/x。

理想很丰满,但现实往往很骨感。你忽视了非常重要的一点,那就是样本的数量再大,毕竟也是有限的,样本中不会有太多同时包含 W1​,W2​,W3​,…,Wn​ 的短信的,甚至很多时候,样本中根本不存在这样的短信。没有样本,也就无法计算概率。所以这样的推理方式虽然正确,但是实践中并不好用。

这个时候,朴素贝叶斯公式就可以派上用场了。我们通过朴素贝叶斯公式,将这个概率的求解,分解为其他三个概率的求解。你可以看我画的图。那转化之后的三个概率是否可以通过样本统计得到呢?

在这里插入图片描述

P(W1​,W2​,W3​,…,Wn​ 同时出现在一条短信中 | 短信是垃圾短信)这个概率照样无法通过样本来统计得到。但是我们可以基于下面这条著名的概率规则来计算。

独立事件发生的概率计算公式:P(A*B) = P(A)P(B)
如果事件 A 和事件 B 是独立事件,两者的发生没有相关性,事件 A 发生的概率 P(A) 等于 p1,事件 B 发生的概率 P(B) 等于 p2,那两个同时发生的概率 P(A
B) 就等于 P(A)*P(B)。

基于这条独立事件发生概率的计算公式,我们可以把 P(W1,W2,W3,…,Wn 同时出现在一条短信中 | 短信是垃圾短信)分解为下面这个公式:
在这里插入图片描述
其中,P(Wi​ 出现在短信中 | 短信是垃圾短信)表示垃圾短信中包含 Wi​ 这个单词的概率有多大。这个概率值通过统计样本很容易就能获得。我们假设垃圾短信有 y 个,其中包含 Wi​ 的有 x 个,那这个概率值就等于 x/y。

P(W1​,W2​,W3​,…,Wn​ 同时出现在一条短信中 | 短信是垃圾短信)这个概率值,我们就计算出来了,我们再来看下剩下两个。

P(短信是垃圾短信)表示短信是垃圾短信的概率,这个很容易得到。我们把样本中垃圾短信的个数除以总样本短信个数,就是短信是垃圾短信的概率。

不过,P(W1​,W2​,W3​,…,Wn​ 同时出现在一条短信中)这个概率还是不好通过样本统计得到,原因我们前面说过了,样本空间有限。不过,我们没必要非得计算这一部分的概率值。为什么这么说呢?

实际上,我们可以分别计算同时包含 W1​,W2​,W3​,…,Wn​ 这 n 个单词的短信,是垃圾短信和非垃圾短信的概率。假设它们分别是 p1 和 p2。我们并不需要单纯地基于 p1 值的大小来判断是否是垃圾短信,而是通过对比 p1 和 p2 值的大小,来判断一条短信是否是垃圾短信。更细化一点讲,那就是,如果 p1 是 p2 的很多倍(比如 10 倍),我们才确信这条短信是垃圾短信。

在这里插入图片描述
基于这两个概率的倍数来判断是否是垃圾短信的方法,我们就可以不用计算 P(W1​,W2​,W3​,…,Wn​ 同时出现在一条短信中)这一部分的值了,因为计算 p1 与 p2 的时候,都会包含这个概率值的计算,所以在求解 p1 和 p2 倍数(p1/p2)的时候,我们也就不需要这个值。

总结引申

今天,我们讲了基于黑名单、规则、概率统计三种垃圾短信的过滤方法,实际上,今天讲的这三种方法,还可以应用到很多类似的过滤、拦截的领域,比如垃圾邮件的过滤等等。

在讲黑名单过滤的时候,我讲到布隆过滤器可能会存在误判情况,可能会导致用户投诉。实际上,我们可以结合三种不同的过滤方式的结果,对同一个短信处理,如果三者都表明这个短信是垃圾短信,我们才把它当作垃圾短信拦截过滤,这样就会更精准。

当然,在实际的工程中,我们还需要结合具体的场景,以及大量的实验,不断去调整策略,权衡垃圾短信判定的准确率(是否会把不是垃圾的短信错判为垃圾短信)和召回率(是否能把所有的垃圾短信都找到),来实现我们的需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1375254.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MYSQL】MYSQL 的学习教程(十二)之 MySQL 啥时候用记录锁,啥时候用间隙锁

在「读未提交」和「读已提交」隔离级别下,都只会使用记录锁;而对于「可重复读」隔离级别来说,会使用记录锁、间隙锁和 Next-Key 锁 那么 MySQL 啥时候会用记录锁,啥时候会用间隙锁,啥时候又会用 Next-Key 锁呢&#xf…

美客多本土店与跨境店有何区别?本土店如何入驻运营?

美客多被誉为“拉美亚马逊”,作为拉美地区最大的跨境电商平台,吸引了不少跨境电商卖家入驻。但在入驻过程中也会遇到一个问题,本土店与跨境店分别是什么?有何区别?应该选择本土店还是跨境店入驻呢?下面为你…

使用YOLOv5训练自己的数据集 --- 老鼠识别

方式一:YOLOv5开源地址:https://github.com/ultralytics/yolov5/blob/master/README.zh-CN.md 方式二:YOLOv5源码:https://pan.baidu.com/s/12khk-Wkc5_J5ho4oZ7_FhA?pwdxtru 安装环境依赖包: 项目目录地址栏中输入…

MobaXterm游戏讲解

前言 没想到吧,这里还有游戏,以下是玩法 玩法 注 点击Type可以自由更改地图大小 1.Netwalk 这个游戏是用鼠标点击每一个格子,进行旋转方向,使得所有方块连接接来,全部变成亮蓝色 2.Mines 这个就是扫雷了&#xff…

算法训练营Day42(背包问题)

基础 非竞赛只需要搞懂0-1背包和完全背包 0-1背包基础 0-1背包是完全背包和多重背包的基础 n个物品,每个物品一个,每个物品有自己的重量和价值,,一个背包能装m物品,问最多装多少物品。 暴力解法,n个物品…

循环中的continue和break | python

1 continue continue关键字用于:中断本次循环,直接进入下一次循环 continue可以用于:for循环和while循环,效果一致 上侧代码: 在循环内,遇到continue就结束当次循环,进行下一次所以,语句2是不会执行的。 1.1 应用场…

网点分散难管理?组网是物流企业的正解!

物流企业服务网点分散、难以管理是企业面临的一个问题,而组网是解决这一问题的正解。通过建立统一的网络,物流企业可以实现更好的资源管理和信息流动,从而提高运营效率和服务水平,实现企业的可持续发展。 随着物流业务的不断拓展…

pycharm导入etree报Cannot find reference ‘etree‘ in ‘__init__.py‘ more... (Ctrl+F1)

问题 发现 from lxml import etree的时候,etree报错了。提示Cannot find reference etree in __init__.py more... (CtrlF1)。 解决办法 后面发现是pycharm自己的BUG,所以写了新的写法

黑马苍穹外卖学习Day2

文章目录 员工管理模块实现新增员工需求设计分析代码开发功能测试代码完善 员工分页查询需求分析与设计代码开发功能测试代码完善 启用禁用员工账号需求分析和设计代码开发功能测试 编辑员工需求分析代码开发 导入分类模块功能代码需求分析设计 员工管理模块实现 新增员工 需…

小程序基础学习(组件化)

(一)创建 找到components文件夹下面创建新的文件夹 然后再文件夹内创建component格式的文件 创建后这样 我创建的是my-info的文件夹以及my-info的components文件,跟着普通的页面一样 (二) 注册组件 找到你需要使用组…

刚开始学习 c++ 要注意哪些方面?

刚开始学习 c 要注意哪些方面? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「c的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&…

API获取商品详情电商补单及价格监控调用api

很多电商系统,如返利系统、ERP、OMS软件等,需要通过商品API接口获取商品详情信息,来满足业务场景需要。具体包括:商品的标题、价格、SKU、主图、评价等维度信息 获取key和密钥 返回数据: {"item": {"…

MacOS安装Miniforge、Tensorflow、Jupyter Lab等(2024年最新)

大家好,我是邵奈一,一个不务正业的程序猿、正儿八经的斜杠青年。 1、世人称我为:被代码耽误的诗人、没天赋的书法家、五音不全的歌手、专业跑龙套演员、不合格的运动员… 2、这几年,我整理了很多IT技术相关的教程给大家&#xff0…

查看Linux磁盘空间

(1)、该命令会列出当前系统所有挂载的文件系统以及它们的使用情况,包括总容量、已用空间、可用空间、使用百分比等信息 df -h如果查看某一个文件夹的,可以 df -h folderName (2)、计算指定目录下所有文件和子目录所占用的磁盘空间大小,并以人类可读的格…

创建型模式 | 工厂模式

文章目录 一、简单工厂1.1、原理1.2、核心角色1.3、UML类图1.4、代码实现1.5、总结 二、工厂模式2.1、原理2.2、关键角色2.3、代码实现2.4、总结 三、抽象工厂模式3.1、原理3.2、关键角色3.3、UML类图3.4、工厂模式与抽象工厂模式的区别 前言 工厂模式是最常用的设计模式之一&a…

ROS---激光雷达的使用

ROS—激光雷达的使用 激光雷达是现今机器人尤其是无人车领域及最重要、最关键也是最常见的传感器之一,是机器人感知外界的一种重要手段。本文将介绍在ROS下使用激光雷达传感器,我们选用的激光雷达型号为思岚A1。 使用流程如下: 硬件准备;软…

C++——简介、Hello World、变量常量、数据类型

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…

idea编译报错(Maven项目)

idea编译报错 找不到符号 第一步:开启注解处理器 第二步:清理MVN,package并重新编译 第三步:重新导入项目:

本地开发环境请求服务器接口跨域的问题(vue的问题)

上面的这个报错大家都不会陌生,报错是说没有访问权限(跨域问题)。本地开发项目请求服务器接口的时候,因为客户端的同源策略,导致了跨域的问题。下面先演示一个没有配置允许本地跨域的的情况: 可以看到&…

【亲测有效】Win11 卸载MySQL5.7以及安装MySQL8.0.35

目录 一、卸载原来本地的mysql5.7 1.mysql服务部分 1.1停止mysql服务 1.2删除mysql服务 2.卸载 MySQL程序 3.残余文件的清理 3.1删除mysql安装的目录 3.2删除mysql数据存放的目录 3.3删除mysql自定义目录 4.清理注册表 5.删除环境变量配置 二、安装mysql8.0.35 1.…