【LangChain学习之旅】—(4) 模型I/O:输入提示、调用模型、解析输出

news2024/11/23 21:20:54

【LangChain学习之旅】—(4) 模型I/O:输入提示、调用模型、解析输出

  • Model I/O
  • LangChain 中提示模板的构建
  • 语言模型
  • 为什么选择langchain
  • 输出解析
  • 总结

Reference:LangChain 实战课

Model I/O

我们可以把对模型的使用过程拆解成三块,分别是输入提示(对应图中的 Format)、调用模型(对应图中的 Predict)和输出解析(对应图中的 Parse)。这三块形成了一个整体,因此在 LangChain 中这个过程被统称为 Model I/O(Input/Output)。

在这里插入图片描述
在模型 I/O 的每个环节,LangChain 都为咱们提供了模板和工具,快捷地形成调用各种语言模型的接口。

  1. 提示模板:使用模型的第一个环节是把提示信息输入到模型中,你可以创建 LangChain 模板,根据实际需求动态选择不同的输入,针对特定的任务和应用调整输入。
  2. 语言模型:LangChain 允许你通过通用接口来调用语言模型。这意味着无论你要使用的是哪种语言模型,都可以通过同一种方式进行调用,这样就提高了灵活性和便利性。
  3. 输出解析:LangChain 还提供了从模型输出中提取信息的功能。通过输出解析器,你可以精确地从模型的输出中获取需要的信息,而不需要处理冗余或不相关的数据,更重要的是还可以把大模型给回的非结构化文本,转换成程序可以处理的结构化数据。

下面我们用示例的方式来深挖一下这三个环节。

LangChain 中提示模板的构建

语言模型是个无穷无尽的宝藏,人类的知识和智慧,好像都封装在了这个“魔盒”里面了。但是,怎样才能解锁其中的奥秘,那可就是仁者见仁智者见智了。所以,现在“提示工程”这个词特别流行,所谓 Prompt Engineering,就是专门研究对大语言模型的提示构建。

使用大模型的场景千差万别,因此肯定不存在那么一两个神奇的模板,能够骗过所有模型,让它总能给你最想要的回答。然而,好的提示(其实也就是好的问题或指示啦),肯定能够让你在调用语言模型的时候事半功倍。

我们希望为销售的每一种鲜花生成一段简介文案,那么每当你的员工或者顾客想了解某种鲜花时,调用该模板就会生成适合的文字。

提示模板的生成方式如下:

# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template) 
# 打印LangChain提示模板的内容
print(prompt)

提示模板的具体内容如下:

input_variables=['flower_name', 'price'] 
output_parser=None partial_variables={} 
template='/\n您是一位专业的鲜花店文案撰写员。
\n对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?\n'
template_format='f-string' 
validate_template=True

在这里,所谓“模板”就是一段描述某种鲜花的文本格式,它是一个 f-string,其中有两个变量 {flower_name}{price} 表示花的名称和价格,这两个值是模板里面的占位符,在实际使用模板生成提示时会被具体的值替换。

代码中的 from_template 是一个类方法,它允许我们直接从一个字符串模板中创建一个 PromptTemplate 对象。打印出这个 PromptTemplate 对象,你可以看到这个对象中的信息包括输入的变量(在这个例子中就是 flower_nameprice)、输出解析器(这个例子中没有指定)、模板的格式(这个例子中为'f-string')、是否验证模板(这个例子中设置为 True)。

因此 PromptTemplatefrom_template 方法就是将一个原始的模板字符串转化为一个更丰富、更方便操作的 PromptTemplate 对象,这个对象就是 LangChain 中的提示模板。LangChain 提供了多个类和函数,也为各种应用场景设计了很多内置模板,使构建和使用提示变得容易。我们下节课还会对提示工程的基本原理和 LangChain 中的各种提示模板做更深入的讲解。

下面,我们将会使用这个刚刚构建好的提示模板来生成提示,并把提示输入到大语言模型中。

语言模型

LangChain 中支持的模型有三大类。

  1. 大语言模型(LLM) ,也叫 Text Model,这些模型将文本字符串作为输入,并返回文本字符串作为输出。Open AI 的 text-davinci-003、Facebook 的 LLaMA、ANTHROPIC 的 Claude,都是典型的 LLM。
  2. 聊天模型(Chat Model),主要代表 Open AI 的 ChatGPT 系列模型。这些模型通常由语言模型支持,但它们的 API 更加结构化。具体来说,这些模型将聊天消息列表作为输入,并返回聊天消息。
  3. 文本嵌入模型(Embedding Model),这些模型将文本作为输入并返回浮点数列表,也就是 Embedding。而文本嵌入模型如 OpenAI 的 text-embedding-ada-002,我们之前已经见过了。文本嵌入模型负责把文档存入向量数据库,和我们这里探讨的提示工程关系不大。

然后,我们将调用语言模型,让模型帮我们写文案,并且返回文案的结果。

# 设置OpenAI API Key
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI API Key'

# 导入LangChain中的OpenAI模型接口
from langchain import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
# 输入提示
input = prompt.format(flower_name=["玫瑰"], price='50')
# 得到模型的输出
output = model(input)
# 打印输出内容
print(output)  

input = prompt.format(flower_name=["玫瑰"], price='50') 这行代码的作用是将模板实例化,此时将 {flower_name} 替换为 "玫瑰"{price} 替换为 '50',形成了具体的提示:“您是一位专业的鲜花店文案撰写员。对于售价为 50 元的玫瑰,您能提供一个吸引人的简短描述吗?”

让你心动!50元就可以拥有这支充满浪漫气息的玫瑰花束,让TA感受你的真心爱意。

复用提示模板,我们可以同时生成多个鲜花的文案。

# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template) 
# 打印LangChain提示模板的内容
print(prompt)

# 设置OpenAI API Key
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI API Key'

# 导入LangChain中的OpenAI模型接口
from langchain import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')

# 多种花的列表
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]

# 生成多种花的文案
for flower, price in zip(flowers, prices):
    # 使用提示模板生成输入
    input_prompt = prompt.format(flower_name=flower, price=price)

    # 得到模型的输出
    output = model(input_prompt)

    # 打印输出内容
    print(output)

模型的输出如下:

这支玫瑰,深邃的红色,传递着浓浓的深情与浪漫,令人回味无穷!
百合:美丽的花朵,多彩的爱恋!30元让你拥有它!
康乃馨—20元,象征爱的祝福,送给你最真挚的祝福。

为什么选择langchain

这个过程中,使用 LangChain 的意义究竟何在呢?我直接调用 Open AI 的 API,不是完全可以实现相同的功能吗?

的确如此,让我们来看看直接使用 Open AI API 来完成上述功能的代码。

import openai # 导入OpenAI
openai.api_key = 'Your-OpenAI-API-Key' # API Key

prompt_text = "您是一位专业的鲜花店文案撰写员。对于售价为{}元的{},您能提供一个吸引人的简短描述吗?" # 设置提示

flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]

# 循环调用Text模型的Completion方法,生成文案
for flower, price in zip(flowers, prices):
    prompt = prompt_text.format(price, flower)
    response = openai.Completion.create(
        engine="gpt-3.5-turbo-instruct",
        prompt=prompt,
        max_tokens=100
    )
    print(response.choices[0].text.strip()) # 输出文案

上面的代码是直接使用 Open AI 和带有{}占位符的提示语,同时生成了三种鲜花的文案。看起来也是相当简洁。

不过,如果你深入思考一下,你就会发现 LangChain 的优势所在。我们只需要定义一次模板,就可以用它来生成各种不同的提示。对比单纯使用f-string来格式化文本,这种方法更加简洁,也更容易维护。而 LangChain 在提示模板中,还整合了 output_parser、template_format 以及是否需要 validate_template 等功能。

更重要的是,使用 LangChain 提示模板,我们还可以很方便地把程序切换到不同的模型,而不需要修改任何提示相关的代码。

下面,我们用完全相同的提示模板来生成提示,并发送给 HuggingFaceHub 中的开源模型来创建文案。(注意:需要注册HUGGINGFACEHUB_API_TOKEN)

# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """You are a flower shop assitiant。\n
For {price} of {flower_name} ,can you write something for me?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template) 
# 打印LangChain提示模板的内容
print(prompt)
import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = '你的HuggingFace API Token'
# 导入LangChain中的OpenAI模型接口
from langchain import HuggingFaceHub
# 创建模型实例
model= HuggingFaceHub(repo_id="google/flan-t5-large")
# 输入提示
input = prompt.format(flower_name=["rose"], price='50')
# 得到模型的输出
output = model(input)
# 打印输出内容
print(output)

输出:

i love you

使用较早期的开源模型 T5,得到了很粗糙的文案 “i love you”(还要注意 T5 还没有支持中文的能力,把提示文字换成英文句子,结构其实都没变)。

当然,这里想要向你传递的信息是:你可以重用模板,重用程序结构,通过 LangChain 框架调用任何模型。如果你熟悉机器学习的训练流程的话,这 LangChain 是不是让你联想到 PyTorch 和 TensorFlow 这样的框架——模型可以自由选择、自主训练,而调用模型的框架往往是有章法、而且可复用的

因此,使用 LangChain 和提示模板的好处是:

  1. 代码的可读性:使用模板的话,提示文本更易于阅读和理解,特别是对于复杂的提示或多变量的情况。
  2. 可复用性:模板可以在多个地方被复用,让你的代码更简洁,不需要在每个需要生成提示的地方重新构造提示字符串。
  3. 维护:如果你在后续需要修改提示,使用模板的话,只需要修改模板就可以了,而不需要在代码中查找所有使用到该提示的地方进行修改。
  4. 变量处理:如果你的提示中涉及到多个变量,模板可以自动处理变量的插入,不需要手动拼接字符串。
  5. 参数化:模板可以根据不同的参数生成不同的提示,这对于个性化生成文本非常有用。那我们就接着介绍模型 I/O 的最后一步,输出解析。

输出解析

接着介绍模型 I/O 的最后一步,输出解析。

LangChain 提供的解析模型输出的功能,使你能够更容易地从模型输出中获取结构化的信息,这将大大加快基于语言模型进行应用开发的效率。

为什么这么说呢?请你思考一下刚才的例子,你只是让模型生成了一个文案。这段文字是一段字符串,正是你所需要的。但是,在开发具体应用的过程中,很明显我们不仅仅需要文字,更多情况下我们需要的是程序能够直接处理的、结构化的数据。

比如说,在这个文案中,如果你希望模型返回两个字段:

  • description:鲜花的说明文本
  • reason:解释一下为何要这样写上面的文案

那么,模型可能返回的一种结果是:
A:“文案是:让你心动!50 元就可以拥有这支充满浪漫气息的玫瑰花束,让 TA 感受你的真心爱意。为什么这样说呢?因为爱情是无价的,50 元对应热恋中的情侣也会觉得值得。”上面的回答并不是我们在处理数据时所需要的,我们需要的是一个类似于下面的 Python 字典。

B:

{
description: “让你心动!50 元就可以拥有这支充满浪漫气息的玫瑰花束,让 TA 感受你的真心爱意。” ;
 reason: “因为爱情是无价的,50 元对应热恋中的情侣也会觉得值得。”
}

那么从 A 的笼统言语,到 B 这种结构清晰的数据结构,如何自动实现?这就需要 LangChain 中的输出解析器上场了。

下面,我们就通过 LangChain 的输出解析器来重构程序,让模型有能力生成结构化的回应,同时对其进行解析,直接将解析好的数据存入 CSV 文档。

# 通过LangChain调用模型
from langchain import PromptTemplate, OpenAI

# 导入OpenAI Key
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'

# 创建原始提示模板
prompt_template = """您是一位专业的鲜花店文案撰写员。
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
{format_instructions}"""

# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')

# 导入结构化输出解析器和ResponseSchema
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
# 定义我们想要接收的响应模式
response_schemas = [
    ResponseSchema(name="description", description="鲜花的描述文案"),
    ResponseSchema(name="reason", description="问什么要这样写这个文案")
]
# 创建输出解析器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

# 获取格式指示
format_instructions = output_parser.get_format_instructions()
# 根据原始模板创建提示,同时在提示中加入输出解析器的说明
prompt = PromptTemplate.from_template(prompt_template, 
                partial_variables={"format_instructions": format_instructions}) 

# 数据准备
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]

# 创建一个空的DataFrame用于存储结果
import pandas as pd
df = pd.DataFrame(columns=["flower", "price", "description", "reason"]) # 先声明列名

for flower, price in zip(flowers, prices):
    # 根据提示准备模型的输入
    input = prompt.format(flower_name=flower, price=price)

    # 获取模型的输出
    output = model(input)
    
    # 解析模型的输出(这是一个字典结构)
    parsed_output = output_parser.parse(output)

    # 在解析后的输出中添加“flower”和“price”
    parsed_output['flower'] = flower
    parsed_output['price'] = price

    # 将解析后的输出添加到DataFrame中
    df.loc[len(df)] = parsed_output  

# 打印字典
print(df.to_dict(orient='records'))

# 保存DataFrame到CSV文件
df.to_csv("flowers_with_descriptions.csv", index=False)

输出:

[{'flower': '玫瑰', 'price': '50', 'description': 'Luxuriate in the beauty of this 50 yuan rose, with its deep red petals and delicate aroma.', 'reason': 'This description emphasizes the elegance and beauty of the rose, which will be sure to draw attention.'}, 
{'flower': '百合', 'price': '30', 'description': '30元的百合,象征着坚定的爱情,带给你的是温暖而持久的情感!', 'reason': '百合是象征爱情的花,写出这样的描述能让顾客更容易感受到百合所带来的爱意。'}, 
{'flower': '康乃馨', 'price': '20', 'description': 'This beautiful carnation is the perfect way to show your love and appreciation. Its vibrant pink color is sure to brighten up any room!', 'reason': 'The description is short, clear and appealing, emphasizing the beauty and color of the carnation while also invoking a sense of love and appreciation.'}]

这段代码中,首先定义输出结构,我们希望模型生成的答案包含两部分:鲜花的描述文案(description)和撰写这个文案的原因(reason)。所以我们定义了一个名为 response_schemas 的列表,其中包含两个 ResponseSchema 对象,分别对应这两部分的输出。

根据这个列表,通过 StructuredOutputParser.from_response_schemas 方法创建了一个输出解析器。

然后,我们通过输出解析器对象的 get_format_instructions() 方法获取输出的格式说明(format_instructions),再根据原始的字符串模板和输出解析器格式说明创建新的提示模板(这个模板就整合了输出解析结构信息)。再通过新的模板生成模型的输入,得到模型的输出。此时模型的输出结构将尽最大可能遵循我们的指示,以便于输出解析器进行解析。

对于每一个鲜花和价格组合,我们都用 output_parser.parse(output) 把模型输出的文案解析成之前定义好的数据格式,也就是一个 Python 字典,这个字典中包含了 description 和 reason 这两个字段的值。

parsed_output
{'description': 'This 50-yuan rose is... feelings.', 'reason': 'The description is s...y emotion.'}
len(): 2

最后,把所有信息整合到一个 pandas DataFrame 对象中(需要安装 Pandas 库)。这个 DataFrame 对象中包含了 flower、price、description 和 reason 这四个字段的值。其中,description 和 reason 是由 output_parser 从模型的输出中解析出来的,flower 和 price 是我们自己添加的。

我们可以打印出 DataFrame 的内容,也方便地在程序中处理它,比如保存为下面的 CSV 文件。因为此时数据不再是模糊的、无结构的文本,而是结构清晰的有格式的数据。输出解析器在这个过程中的功劳很大。
在这里插入图片描述

总结

这样,你就从头到尾利用大模型开发出来了一个能够自动生成鲜花文案的应用程序!怎么样,是不是感觉和我们平时所做的基于 SQL 和数据库表以及固定业务逻辑的应用开发很不一样?

每一次运行都有不同的结果,而我们完全不知道大模型下一次会给我们带来怎样的新东西。因此,基于大模型构建的应用可以说充满了创造力。

总结一下使用 LangChain 框架的好处,你会发现它有这样几个优势。

  1. 模板管理:在大型项目中,可能会有许多不同的提示模板,使用 LangChain 可以帮助你更好地管理这些模板,保持代码的清晰和整洁。
  2. 变量提取和检查:LangChain 可以自动提取模板中的变量并进行检查,确保你没有忘记填充任何变量。
  3. 模型切换:如果你想尝试使用不同的模型,只需要更改模型的名称就可以了,无需修改代码。
  4. 输出解析:LangChain 的提示模板可以嵌入对输出格式的定义,以便在后续处理过程中比较方便地处理已经被格式化了的输出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1374165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式引擎Elasticsearch本地部署并结合内网穿透远程访问

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

怎么看待存在争议的低代码?

一、低代码直接效果怎么样? 以体验过的JNPF平台为例,JNPF低代码开发的过程就是可以通过拖拉拽的方式去完成软件开发,复杂功能可以通过二次开发来解决,提升开发效率,降低开发成本。 给大家举个例子,以我们熟…

ORACLE RAC DG文件路径错乱解决办法

最近接手了一个客户的RAC-RAC dg环境的维护,登录上去之后发现dg延迟了8天,由于主库的空间非常紧张,归档日志早就删除了,所以准备使用rman基于scn点的备份恢复的方案恢复dg同步 在备份完成之后,使用新的控制文件进行数据恢复的时候报错datafile 43 not found: 检查了一下发现当…

SpringBoot请求参数加密、响应参数解密

SpringBoot请求参数加密、响应参数解密 1.说明 在项目开发工程中,有的项目可能对参数安全要求比较高,在整个http数据传输的过程中都需要对请求参数、响应参数进行加密,也就是说整个请求响应的过程都是加密处理的,不在浏览器上暴…

[linux]编译一个ko文件并运行

一、需求 有一段代码需要在运行时加载注入内核中&#xff0c;当用户层需要访问时可以提供内核态环境去运行。 二、c代码构建 // #include <errno.h> // #include <string.h> // #include <stdio.h> // #include <fcntl.h> // #include <stdlib.h…

全新小白菜QQ云端机器人登录系统源码 /去除解密授权学习版源码

源码介绍&#xff1a; 全新小白菜QQ云端机器人登录系统源码&#xff0c;是一款经过全面解密的授权学习版源码。 这款源码已解除了授权版的限制&#xff0c;然而许多人可能对其用途并不了解。实际上&#xff0c;该源码主要面向群机器人爱好者设计。它是一个基于挂机宝机器人框…

基于3D Gaussian Splatting与NeRF实现三维重建(使用IPhone创建数据集)

基于Spectacular AI与NeRF实现三维重建-使用IPhone创建数据集 前言项目简介创建数据集扫描处理数据集 解析数据集Python环境 Windows ffmpeg 环境搭建数据集处理安装Nerfstudio需要CUDA环境 依次安装依赖pip install nerfstudio Nerfstudio实现效果开始训练参数配置实时训练浏览…

吐血整理,自动化测试框架总结,一篇从0到1策底打通...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、什么是框架 定…

目标检测开源数据集——道路坑洼

一、危害 对车辆的影响&#xff1a;道路坑洼会导致车辆行驶不稳&#xff0c;增加车辆的颠簸&#xff0c;不仅影响乘坐舒适度&#xff0c;还可能对车辆的悬挂系统、轮胎等造成损害。长期在坑洼路面上行驶&#xff0c;车辆的减震系统、悬挂系统等关键部件容易受损&#xff0c;进…

(超详细)2-YOLOV5改进-添加SimAM注意力机制

1、在yolov5/models下面新建一个SimAM.py文件&#xff0c;在里面放入下面的代码 代码如下&#xff1a; import torch import torch.nn as nnclass SimAM(torch.nn.Module):def __init__(self, e_lambda1e-4):super(SimAM, self).__init__()self.activaton nn.Sigmoid()self…

中国电子学会2022年12月份青少年软件编程Scratch图形化等级考试试卷二级真题(含答案)

1.运行下列哪段程序&#xff0c;可以让狗狗走到木屋门口&#xff1f;&#xff08;C&#xff09;(2分) A. B. C. D. 答案解析&#xff1a;小窝在狗狗前方90度方向&#xff0c;我们使用程序让狗狗向前移动即可&#xff0c;移动距离不会超过舞台的宽度&#xff08;480&#xf…

git init 执行后发生了什么?

首先在磁盘中创建一个新目录 Git&#xff0c;进入该目录后执行 git init 初始化。这个时候目录下会创建一个隐藏目录 ./git&#xff0c;这个./git 目录叫做 Git 版本库或者仓库 $ git init Initialized empty Git repository in D:/Git/.git/在讲解.git 目录内容前&#xff0c…

Xcode15 升级问题记录

这里写自定义目录标题 新版本Xcode15升级问题1&#xff1a;rsync error: some files could not be transferred (code 23) at ...参考 新版本Xcode15升级 下载地址&#xff1a;https://developer.apple.com/download/all/ 我目前使用的版本是Xcode15.2 我新创建了一个项目&…

《JVM由浅入深学习【七】 2024-01-11》JVM由简入深学习提升分享

亲爱的读者们&#xff0c;欢迎来到本篇博客&#xff0c;这是JVM第七次分享&#xff0c;下面是七个JVM常用常面的分享&#xff0c;请笑纳 目录 1. 几个与JVM 内存相关的核心参数2.如何计算一个对象的大小3.堆为什么要分为新生代和老年代4.JVM堆的年轻代为什么要有两个 Survivor…

分布式限流和本地限流那些事?

分布式限流和本地限流的目的是一样的&#xff0c;当然我建议技术人在自己的服务中优先考虑本地限流&#xff0c;那样对于自己的API的影响会小一点。 限流这种技术&#xff0c;在没有触发限流的阈值的时候&#xff0c;是不会有什么大的问题的&#xff0c;当时一旦触发阈值&…

全网独家:基于openEuler-22.03-LTS-SP4底包构建opengauss 2.1.0 rpm包安装的单机轻量版数据库容器

本文基于openEuler-22.03-LTS-SP4底包,使用rpm安装方式构建opengauss 2.1.0 单机轻量版数据库容器。 一、openEuler-22.03-LTS-SP4底包 1、下载镜像 下载链接 sha256:ffe6c97428d6e684519dd670c18d6681861bdc17719b0387c6e11a65e37a771f openEuler-docker.x86_64.tar.xz …

景联文科技:以高质量数据赋能文生图大模型

1月5日&#xff0c;在智求共赢・中国AIGC产业应用峰会暨无界AI生态合作伙伴大会上&#xff0c;中国AIGC产业联盟联合无界AI发布了《中国AIGC文生图产业白皮书2023》&#xff0c;从AIGC文生图发展历程、主流工具、产业实践以及规模预测等多个维度&#xff0c;全面揭示了中国AIGC…

electron+vue编辑Office Word?

Electron 桌面应用是基于 Chromium 内核的&#xff0c;而谷歌Chrome取消了对PPAPI插件支持后&#xff0c;在线Office方案纷纷失效&#xff0c;只能更换国产浏览器在低版本浏览器苟延残喘&#xff0c;不能用于electronvue项目。 经过小编不断的寻找&#xff0c;终于找到一款至今…

vue3的福音框架arco.design

前言&#xff1a; 在vue2于2023年底正式宣布不在维护&#xff0c;vue3使用越来越频繁的时刻&#xff0c;我们实现项目的辅助框架也越来越多。element, iview, antd 等经典框架继续风靡一时&#xff0c;不过也有很多好的框架&#xff0c;功能也强大&#xff0c;比如我们今天说的…

数据交付变革:研发到产运自助化的转型之路

作者 | Chris 导读 本文讲述为了提升产运侧数据观察、分析、决策的效率&#xff0c;支持业务的快速迭代&#xff0c;移动生态数据研发部对数仓建模与BI工具完成升级&#xff0c;采用宽表建模与TDA平台相结合的方案&#xff0c;一站式自助解决数据应用需求。在此过程中&#xff…