【AI】AI和医疗大数据(1/3)

news2024/12/26 21:05:50

目录

一、医疗大数据有哪些

二、医疗大数据的特性

1. 隐私性

2. 复杂性

3. 不均衡性

4. 时序性

三、医疗大数据的目标和挑战


博主曾经在医疗智能设备领域创业,由于当时选择的模式过于复杂,包括了机械硬件、智能终端软硬件、院后微信生态做随访服务等,甚至,在推广的过程中,发现医院的网络条件很差,给医院还免费铺设了WIFI,搞的对WIFIAP信号的布点调优,曾经很有一套。由此,可想而知,这个产品最后的结果如何,确实犯了一些错误。

现在AI时代了,来整理点AI和医疗大数据的资料。

一、医疗大数据有哪些

医疗大数据,顾名思义,是指在医疗领域产生的海量数据。这些数据可能包括患者的病历信息、诊断记录、治疗方案、用药历史、医学影像、基因测序数据等。这些数据不仅数量巨大,而且种类繁多,结构化数据(如数据库中的表格)和非结构化数据(如文本、图像、音频、视频)并存。

医疗大数据的来源主要有以下几个方面:

  1. 医疗机构:医院、诊所、疗养院等是医疗大数据的主要来源之一。患者在这些机构就诊时,会产生大量的病历数据、诊断数据、治疗数据等。
  2. 医疗设备:各种医疗设备,如医学影像设备(CT、MRI等)、监护仪、心电图机等,都会产生大量的数据。这些数据对于疾病的诊断和治疗具有重要意义。
  3. 健康管理平台:随着互联网医疗的发展,越来越多的健康管理平台涌现出来。这些平台通过收集用户的健康信息、运动数据、饮食数据等,为用户提供个性化的健康管理服务。这些数据也是医疗大数据的重要组成部分。
  4. 科研实验:生物医学研究、药物研发等领域也会产生大量的数据。这些数据对于推动医学进步、提高治疗效果具有重要意义。
  5. 公共卫生部门:公共卫生部门负责收集和管理与公共卫生相关的数据,如疾病发病率、死亡率、疫苗接种率等。这些数据对于制定公共卫生政策、预防和控制传染病具有重要意义。

医疗大数据的收集、存储、处理和分析需要遵循相关的法律法规和伦理规范,确保数据的安全性、隐私性和可靠性。同时,医疗大数据的应用也需要具备相关的技术和专业知识,以确保数据的有效利用和价值的最大化。

电子病历如同电商平台中的订单,不管是从管理上还是业务上,都是医疗数据的灵魂。

特别是病历首页。

医疗大数据,在存储空间的占用上,也是很大的。比如一张CT,就是150M左右,一个标准的病理图,要5G左右。而且传输、存储,都要考虑患者的隐私、数据安全、细节损耗等各种问题。我国是人口大国,即使一个社区医院,所要存储和处理的数据,就在千万亿字节的规模。

当然,这些字节,目前大部分都没有在“跳动”,都是沉睡,或者就在诊疗的过程中,损失了,没有被有效的全部管理起来。

即使我们个人,每次看病的过程,医生开的处方,去药店买的药店,其实也都没有管理起来。这些宝贵的历史数据,其实都应该被有效的联网和存储。这是未来一定会实现的事情,保险机构,将可能是对这块领域出资最有积极性,也最可行的金主。

其次还有制药的科研机构。

大数据还有一个开始苏醒,但是没有商业普及的领域,就是每个人的基因图谱。

基因最终是打开生命密码的钥匙。一个基因序列文件的大小,大概是750M到1G。

现在很多人都佩戴健康手环,每时每刻都在产生大量的数据,但是由于种种原因,这些数据基本都被忽略了,其实具有宝贵的科研和健康价值。

二、医疗大数据的特性

医疗大数据除了具有一般大数据的“4V”特性(即Volume数据量大、Variety数据类型多样、Velocity处理速度快、Value价值密度低)外,还具有其独特的特性,其中隐私性是最为重要和显著的一个。以下是医疗大数据的一些主要特性及相应的数据和例子:

1. 隐私性

医疗大数据涉及大量的个人健康信息,这些信息具有高度敏感性。隐私泄露可能导致歧视、身份盗窃、诈骗等严重后果。因此,保护医疗数据的隐私性是至关重要的。

数据和例子

  • 根据一项研究,美国约80%的医疗数据泄露事件涉及患者隐私信息的非法获取。例如,2021年,某大型医疗机构因安全漏洞导致数百万患者的姓名、地址、社保号、诊断信息等被非法访问。
  • 在中国,也有类似的情况。某省级医院的电子病历系统曾被黑客攻击,导致数千份病历资料外泄,其中包括患者的疾病史、用药记录等敏感信息。

2. 复杂性

医疗大数据不仅数量庞大,而且种类繁多,包括结构化数据(如电子病历、实验室检查结果)和非结构化数据(如医学影像、医生手写的病历笔记)。这增加了数据处理和分析的复杂性。

数据和例子

  • 一项研究显示,仅一家大型医院每天就能产生数百GB的医学影像数据。这些数据需要专业的图像处理和分析技术才能提取有用信息。
  • 在基因测序领域,一个人的全基因组数据可以达到数十GB甚至更大。分析这些数据需要高性能计算资源和专业的生物信息学知识。

3. 不均衡性

医疗大数据在不同疾病、不同人群中的分布是不均衡的。某些罕见疾病的数据可能非常稀少,而常见疾病的数据则相对丰富。

数据和例子

  • 根据世界卫生组织的数据,全球约有7000种罕见疾病,其中许多疾病的已知病例数仅有几百或几千例。这使得针对这些疾病的医疗数据非常有限。
  • 相比之下,像糖尿病、高血压等常见疾病的数据则非常丰富。仅中国就有超过1亿糖尿病患者,相关的医疗数据非常庞大。

4. 时序性

医疗数据往往具有时序性,即数据是按照时间顺序产生的。这对于分析疾病的发展过程、治疗效果的评估等具有重要意义。

数据和例子

  • 在慢性病管理中,医生会定期收集患者的生理指标数据(如血糖、血压等)。这些数据形成了一条条时间序列,可以揭示患者的健康状况随时间的变化趋势。
  • 在新冠疫情期间,公共卫生部门每天收集的感染人数、死亡人数等数据也形成了时间序列数据。通过分析这些数据,可以了解疫情的发展动态和防控效果。

医疗大数据具有隐私性、复杂性、不均衡性和时序性等特性。这些特性对医疗大数据的处理、分析和应用提出了独特的挑战和要求。

复杂性,其实其中比较麻烦的,就是多态性和不完整性。

多态,就是什么格式的数据都有,文本的,图像的,视频的,甚至还可能有声音的。图像也有各种不同的来源,不同的分辨率,格式。

不完整,就是我们经常无法获得一个患者的持续的某项监控数据指标,比如心态图,算是可以持续获得比较容易的了,背上一个设备,或者在医院住院,都行,那也无法持续监控,毕竟人的生活和生存质量,也是非常重要的。

三、医疗大数据的目标和挑战

医疗大数据已经是EB级。

1EB=1024PB,1PB=1024TB。

医疗大数据的目标在于通过收集、整合、分析和挖掘海量的医疗数据,为医疗决策、疾病预防、健康管理和科研创新提供强有力的数据支持。具体而言,它旨在提高医疗服务的效率和质量,降低医疗成本,推动个性化医疗和精准医疗的发展,并最终改善人们的健康状况和生活质量。

然而,实现这一目标的道路并非坦途。医疗大数据面临着多方面的挑战:

首先,数据的隐私性和安全性问题是医疗大数据面临的最大挑战之一。由于医疗数据具有高度敏感性,涉及患者的隐私信息,因此必须采取严格的数据加密、匿名化处理和访问控制等措施来保护数据的安全。例如,某大型医疗机构曾因未妥善保护患者数据而遭受黑客攻击,导致大量隐私信息泄露,给患者和医疗机构带来了巨大的损失和信誉风险。

其次,医疗数据的复杂性和多样性也给数据处理和分析带来了挑战。医疗数据不仅包括结构化数据,如电子病历和实验室检查结果,还包括非结构化数据,如医学影像和医生手写笔记。这些数据类型各异,质量参差不齐,需要专业的数据清洗、整合和转换技术才能进行有效的分析。例如,在医学影像分析中,由于不同设备、不同参数设置产生的影像数据存在差异,因此需要开发专门的算法来识别和处理这些差异,以确保分析结果的准确性。

此外,医疗大数据的不均衡性也是一个需要克服的挑战。不同疾病、不同人群的医疗数据分布不均衡,某些罕见疾病的数据可能非常稀少,而常见疾病的数据则相对丰富。这种不均衡性可能导致某些疾病的研究缺乏足够的数据支持,从而限制了医疗大数据的应用范围。例如,在研发针对罕见疾病的新药时,由于病例数有限,研究人员可能难以收集到足够的数据来验证药物的有效性和安全性。

最后,医疗大数据的伦理和法律问题也不容忽视。在收集和使用医疗数据时,必须遵守相关的法律法规和伦理规范,确保数据的合法性和道德性。例如,在未经患者同意的情况下,医疗机构不得将其隐私信息用于商业目的或泄露给第三方。否则,将可能面临法律责任和公众谴责。

医疗大数据的目标虽然远大而美好,但要实现这一目标并不容易。需要克服隐私保护、数据处理、不均衡性以及伦理法律等多方面的挑战。只有通过不断创新和努力,才能逐步推动医疗大数据的发展和应用,最终造福人类健康。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1374058.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用numpy处理图片——滤镜

大纲 3维数组切分打平重组法深度切分法 3维数组堆叠 我们在用手机拍照片时,往往会对照片进行滤镜处理,从而让照片更加美观。本文我们将实现几种滤镜效果——去除所有像素中的某一种原色,形成只有红绿、红蓝和绿蓝原色的照片。 为了突出色彩丰…

openssl3.2 - 在VS2019下源码调试openssl.exe

文章目录 openssl3.2 - 在VS2019下源码调试openssl.exe概述笔记先看一个用.bat调用openssl干活的实例VS2019调试参数设置设置 - 命令参数设置 - 工作目录设置 - 环境变量将命令行中需要的文件拷贝到exe目录单步调试备注END openssl3.2 - 在VS2019下源码调试openssl.exe 概述 …

(超详细)1-YOLOV5改进-Optimal Transport Assignment

Optimal Transport Assignment(OTA)是YOLOv5中的一个改进,它是一种更优的目标检测框架,可以在保证检测精度的同时,大幅提升检测速度。 话不多说,直接开始 1、首先在你的yolov5目录下面的找到loss.py文件 如…

BGP公认任意属性——MED(二)

BGP公认任意属性有两个,分别是:Local-preference 和 MED,本期介绍MED。 点赞关注,持续更新!!! MED 特点 MED (多出口鉴别器),也称为BGP COST,…

设计模式之空对象模式

目录 1.简介 2.结构图 3.实例 4.优缺点 1.简介 空对象模式也是我们平时编程用的比较多的一种行为型设计模式,它的宗旨在解决空对象引起的异常报错问题;在空对象模式(Null Object Pattern)中,一个空对象取代 NULL 对…

Redis常用连接工具

RedisInsight 官网地址: RedisInsight | The Best Redis GUI Redis Desktop Manager 官网地址: RedisInsight | The Best Redis GUI 样式: QuickRedis 官网地址: QuickOfficial - QuickRedis 样式: AnotherRed…

SSL证书链是什么?SSL证书链如何工作?

SSL证书链作为公钥基础设施(PKI)的一项关键功能,它支持许多与安全相关的服务,包括数据机密性、数据完整性和最终实体身份验证,它使得互联网上的安全在线通信成为可能。那么SSL证书链是什么?SSL证书链如何工…

使用Python打造一个爱奇艺热播好剧提前搜系统

目录 一、系统功能设计 二、数据获取与处理 三、搜索功能实现 四、用户界面设计 五、系统部署与维护 六、总结 随着互联网的普及和人们对于娱乐需求的增加,视频网站成为了人们观看电视剧、电影等视频内容的主要渠道。爱奇艺作为国内知名的视频网站之一&#x…

自动化控制面板-1Panel

一、1Panel自动化控制面板 官网地址 1Panel 可以实现: 快速建站、高效管理、安全可靠、一键备份、应用商店 快速建站:深度集成 Wordpress 和 Halo,域名绑定、SSL 证书配置等一键搞定;高效管理:通过 Web 端轻松管理 …

Linux习题7

解析:du命令用于显示目录或文件的大小,du会显示指定的目录或文件所占用的磁盘空间。df命令用于显示目前在Linux系统上的文件系统磁盘使用情况统计。 解析:www是80,ftp是20,21 解析:光盘安装 (常规情况) 硬盘安装 (无光…

面试算法111:计算除法

题目 输入两个数组equations和values,其中,数组equations的每个元素包含两个表示变量名的字符串,数组values的每个元素是一个浮点数值。如果equations[i]的两个变量名分别是Ai和Bi,那么Ai/Bivalues[i]。再给定一个数组queries&am…

哪种小型洗衣机好用?高性价比的小型洗衣机推荐

大型洗衣机作为家居必备小家电,对生活品质的提升十分显著,在很多人的认知中,这种大型洗衣机主要是用来清洁大件的衣服和外套的,不方便将内衣裤都放入到里面,内衣裤的材质和尺寸都是比较特殊,若是直接将其放…

轻量化神奇!看3D模型格式转换工具HOOPS Exchange如何轻松实现减面操作?

现在很多CAD模型都比较复杂,有时候为了一些特殊用途(轻量化显示、布尔运算、CAE网格剖分等),需要到对原始模型进行减面操作。在HOOPS Exchange中,就提供了对模型进行减面操作支持,以下内容就是HOOPS Exchan…

用TF-IDF处理文本数据

计算机擅长处理数字,但不擅长处理文本数据,TF-IDF是处理文本数据最广泛使用的技术之一,本文对它的工作原理以及它的特性进行介绍。 根据直觉,我们认为在文本数据分析中出现频率更高的单词应该具有更大的权重,但事实并…

python使用广度优先搜索算法解决二叉树最大、最小深度

对于广度优先搜索算法的一个经典应用问题,也就是对二叉树求其最大深度、最小深度问题。对于给定的二叉树的最大深度即为二叉树的根节点到最远的叶子结点之间的高度,而相应的最小深度就是根节点与离根节点最近的叶子节点之间的高度。 添加图片注释&#x…

MyBatisPlus学习笔记一

1、简介 MyBatisPlus(简称MP)是一个MyBatis的增强工具,在MyBatisMyBatisMyBatis的的基础上只做增强不做改变,为简化开发,提高效率而生。 官网:MyBatis-Plus mybatisplus通过扫描实体类,并基于…

贪心算法(思路)

最近在cf上做了很多贪心的题,写篇博客来总结一下 Problem - C - Codeforces 看第一道题 不难看出,我们需要在数组中找到一段奇偶相间的序列,要使他们的和最大, 在图中我们假设[1,2]和[3,4]是奇偶相间的序列,我们在在…

如何在 Microsoft Edge 浏览器中启用自动刷新

你是否经常发现自己在使用 Microsoft Edge 时点击刷新按钮?如果您需要一个网页以设定的时间间隔自动更新,那么请接着往下看。 在这篇博文中,我们探讨如何在 Microsoft Edge 浏览器中启用和管理自动刷新功能。 为什么选择自动刷新&#xff1…

【分布式】分布式链路跟踪技术

为什么需要分布式链路追踪 提到分布式链路追踪,我们要先提到微服务。相信很多人都接触过微服务。微服务是一种开发软件的架构和组织方法,它侧重将服务解耦,服务之间通过API通信。使应用程序更易于扩展和更快地开发,从而加速新功能…

使用requests库测试post请求 操作流程

第一步 谷歌f12或其他抓包工具抓包,这里随机抓一个post请求 url:https://eva2.csdn.net/v3/06981375190026432f77c01bfca33e32/lts/groups/dadde766-b087-42da-8e67-d2499a520ee7/streams/a0119567-bf91-4314-ab75-f683ba6c0c0a/logs 第二步 导包 impo…