竞赛保研 基于深度学习的植物识别算法 - cnn opencv python

news2025/1/12 3:53:09

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码



    import tensorflow as tf
    import numpy as np
    from tensorflow.keras import layers, Sequential, Model
    
    class ConvBNReLU(layers.Layer):
        def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):
            super(ConvBNReLU, self).__init__(**kwargs)
            self.conv = layers.Conv2D(filters=out_channel, 
                                      kernel_size=kernel_size, 
                                      strides=strides, 
                                      padding='SAME', 
                                      use_bias=False,
                                      name='Conv2d')
            self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')
            self.activation = layers.ReLU(max_value=6.0)   # ReLU6
            
        def call(self, inputs, training=False, **kargs):
            x = self.conv(inputs)
            x = self.bn(x, training=training)
            x = self.activation(x)
            
            return x


    class InvertedResidualBlock(layers.Layer):
        def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):
            super(InvertedResidualBlock, self).__init__(**kwargs)
            self.hidden_channel = in_channel * expand_ratio
            self.use_shortcut = (strides == 1) and (in_channel == out_channel)
            
            layer_list = []
            # first bottleneck does not need 1*1 conv
            if expand_ratio != 1:
                # 1x1 pointwise conv
                layer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))
            layer_list.extend([
                
                # 3x3 depthwise conv 
                layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),
                layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),
                layers.ReLU(max_value=6.0),
                
                #1x1 pointwise conv(linear) 
                # linear activation y = x -> no activation function
                layers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),
                layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')
            ])
            
            self.main_branch = Sequential(layer_list, name='expanded_conv')
        
        def call(self, inputs, **kargs):
            if self.use_shortcut:
                return inputs + self.main_branch(inputs)
            else:
                return self.main_branch(inputs)  




4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):
    shift_x = x - np.max(x)    # 防止输入增大时输出为nan
    exp_x = np.exp(shift_x)
    return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
 
# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()


    # 二分类 损失函数
    loss = torch.nn.BCELoss()
    l = loss(pred,real)


    # 多分类损失函数
    loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay'] # 权重衰减系数
            momentum = group['momentum'] # 动量因子,0.9或0.8
            dampening = group['dampening'] # 梯度抑制因子
            nesterov = group['nesterov'] # 是否使用nesterov动量

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0: # 进行正则化
                	# add_表示原处改变,d_p = d_p + weight_decay*p.data
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p] # 之前的累计的数据,v(t-1)
                    # 进行动量累计计算
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                    else:
                    	# 之前的动量
                        buf = param_state['momentum_buffer']
                        # buf= buf*momentum + (1-dampening)*d_p
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov: # 使用neterov动量
                    	# d_p= d_p + momentum*buf
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
				# p = p - lr*d_p
                p.data.add_(-group['lr'], d_p)

        return loss

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1373239.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MCU FT61F14x入门

目录 前言一、CMIDE的使用二、系统时钟与睡眠2.1 上电复位 (POR)与系统复位2.2 振荡器和系统时钟2.3 SLEEP睡眠模式 (POWER-DOWN)2.4 低电压检测/比较器 (LVD) 三、I/O端口与中断四、串口USART五、定时器六、ADC七、EEPROM 前言 FT61F14x是辉芒微电子的微控制器&#xff0c;是一…

【Python】AttributeError: module ‘torch.nn‘ has no attribute ‘HardSigmoid‘

AttributeError: module ‘torch.nn’ has no attribute ‘HardSigmoid’ 这个错误是因为PyTorch的torch.nn模块中并没有HardSigmoid这个函数。是拼写的大小写问题&#xff0c;换成nn.Hardsigmoid()即可。 如下述代码出错。 import torch import torch.nn as nn hard_sigmoid…

从0到1实现html文件转换为markdown文档(进度0.1)

Spider-Man 前言准备环境1、node.js2、git 执行指令顺序报错及其解决方案一、npm 错误&#xff01;可以在以下位置找到此运行的完整日志解决方案 二、没有修改权限解决方案&#xff1a; 注意事项总结 前言 当我们处理文档时&#xff0c;常常会遇到将HTML文档转换为Markdown文档…

Python-代码雨【附源码】

Python-代码雨 运行效果&#xff1a;实现的是动态的代码雨 import sys import random import pygame from pygame.locals import *# 屏幕大小 WIDTH 800 HEIGHT 600 # 下落速度范围 SPEED [15, 30] # 字母大小范围 SIZE [5, 30] # CODE长度范围 LEN [1, 8]# 随机生成一个…

国家发改委:《电能质量管理办法(暂行)》2024年4月1日起施行

中华人民共和国国家发展和改革委员会令 第8号 《电能质量管理办法(暂行)》已经2023年12月26日第7次委务会议审议通过,现予公布,自2024 年4月1日起施行。 主任 郑栅洁 2023年12月27日 电能质量管理办法&#xff08;暂行&#xff09; 第一章 总则 第一条 为加强电能质量管理&…

【GoLang入门教程】Go语言几种标准库介绍(六)

文章目录 前言几种库Net库 (网络库&#xff0c;支持 Socket、HTTP、邮件、RPC、SMTP 等)重要的子包和功能&#xff1a;示例 OS库&#xff08;操作系统平台不依赖平台操作封装&#xff09;主要功能&#xff1a;示例 path库(兼容各操作系统的路径操作实用函数)常用函数&#xff1…

中英双语8K向量大模型新鲜出炉,企业出海必备!

自从我们的 Embeddings V2 获得各界好评后&#xff0c;今日&#xff0c;我们推出了全新的中英双语文本向量大模型&#xff1a;jina-embeddings-v2-base-zh。此模型不仅继承了 V2 的全部优势&#xff0c;能够处理长达八千词元的文本&#xff0c;更能流畅应对中英文双语内容&…

Spring MVC 的RequestMapping注解

RequestMapping注解 使用说明 作用&#xff1a;用于建立请求URL和处理请求方法之间的对应关系。 出现位置&#xff1a; 类上&#xff1a; 请求 URL的第一级访问目录。此处不写的话&#xff0c;就相当于应用的根目录。写的话需要以/开头。它出现的目的是为了使我们的 URL 可以…

(详细版)Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

Haoran Wei1∗, Lingyu Kong2∗, Jinyue Chen2, Liang Zhao1, Zheng Ge1†, Jinrong Yang3, Jianjian Sun1, Chunrui Han1, Xiangyu Zhang1 1MEGVII Technology 2University of Chinese Academy of Sciences 3Huazhong University of Science and Technology arXiv 2023.12.11 …

C语言初始化效率问题以及关键字解释

一、初始化效率 1、在静态变量的初始化中&#xff0c;我们可以把可执行程序文件想要初始化的值放在当程序执行时变量将会使用的位置。当可执行文件载入到内存时&#xff0c;这个已经保存了正确初始值的位置将赋值给那个变量&#xff0c;完成这个任务并不需要额外的时间&#xf…

Android 10.0 TvSettings系统设置wifi连接密码框点击Enter键失去焦点

1.前言 在10.0的box产品开发中,在TvSettings中,在wifi连接的时候,在用遥控器输入wifi密码框的时候,会发现在按遥控器Enter键的时候, 发现EditText焦点失去了,导致输入法消失了,为了解决这个问题就需要拦截Enter键保证正常输入wifi密码,接下来就来实现这个功能 如图: 2.…

lvs+keepalived+nginx双主模式双主热备实现负载均衡

目录 一、原理 二、真实服务器nginx配置 三、lvs的keepalived配置 3.1 配置文件 3.2 开启keepalived服务 四、测试 4.1 测试访问VIP 4.2 模拟lvs01宕机 主机名IPnginx0111.0.1.31nginx0111.0.1.31lvs0111.0.1.33lvs0211.0.1.34VIP111.0.1.29VIP211.0.1.30 一、原理 lvskeepal…

解决JuPyter500:Internal Server Error问题

目录 一、问题描述 二、问题原因 三、解决方法 四、参考文章 一、问题描述 在启动Anaconda Prompt后&#xff0c;通过cd到项目文件夹启动Jupyter NoteBook点击.ipynb文件发生500报错。 二、问题原因 base环境下输入指令&#xff1a; jupyter --version 发现jupyter环境…

k8s部署mongodb-sharded7.X集群(多副本集)

#mongodb-sharded 7.X版本CHART NAME: mongodb-sharded CHART VERSION: 7.0.5 APP VERSION: 7.0.2helm repo add bitnami https://charts.bitnami.com/bitnami helm pull bitnami/bitnami/mongodb-sharded --untar默认副本数较多。我修改为33 搜索关键字replicaCount 修改 最后…

064:vue中一维数组的全选、全不选、反选(图文示例)

第061个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

【教程】通过Excel宏/Pandas两种方法来自动添加渐变数据条

这种数据真的很难看懂&#xff1a; 一般会对其画折线图或者数据条&#xff0c;相比起来就非常直观&#xff1a; 但是每一列都要手动这样设置就非常累了&#xff0c;所以这里就用到了VBA宏(或者Pandas)。 VBA宏方法 从这里进入宏&#xff1a; 随便写一个宏名后点创建&#xff1…

Triumphcore FPGA调测试记录

FPGA采用Xilinx pynq Z2开发板。基于V2.5版本开发 OverView uart端口映射 BUG调试记录 2024.1.7 复位状态导致取指时序错误 错误波形&#xff1a; 正确波形 问题代码&#xff1a; 2024.1.9 clock_wizard设置输入时钟是输出时钟的2^n倍&#xff0c;输出时钟的占空比才…

实战(CVE-2023-42442)JumpServer未授权访问漏洞

声明&#xff1a; 该文章仅供网络安全领域的学习使用&#xff0c;请勿利用文章内的相关技术从事任何非法行为。 知攻善防&#xff0c;遇强则强。 开发和安全缺一不可&#xff01; 目录 一、知识介绍 1、堡垒机&#xff08;跳板机&#xff09; 2、Jumpserver 二、漏洞介绍 三…

本地远程实时获取无人机采集视频图像(天空端 + jetson nano + 检测分割 + 回传地面端显示)

1、无线图传设备介绍 2、jetson nano天空端数据采集检测保存 3、本地回传显示 1、无线图传设备介绍 由于本设计考虑将无人机得到检测结果实时回传给地面站显示&#xff0c;因此需要考虑一个远程无线通信设备进行传输。本设计采用思翼HM30图传设备。通过无线图传的wifi将天空端…

Linux——firewalld防火墙(二)

一、firewalld高级配置 1、IP地址伪装 地址伪装&#xff08;masquerade):通过地址伪装&#xff0c;NAT设备将经过设备的包转发到指定接收方&#xff0c;同时将通过的数据包的源地址更改为其自己的接口地址。当返回的数据包到达时&#xff0c;会将目的地址修改为原始主机的地址…