[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(4) 质量刚体的在坐标系下运动

news2024/11/17 17:49:03

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.

食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
务必自己推导全部公式,并理解每个符号的含义

机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part4

      • 2.2.4 牛顿-欧拉方程 Netwon-Euler equation
    • 2.3 惯性矩阵的转换 Inertia-Matrix Transformation
    • 2.4 惯性矩阵的主轴定理} Principal Axis Theorem


H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} H ΣM/OF进一步处理可得: H ⃗ Σ M / O F = ∑ i N m P i ⋅ R ⃗ O P i F × ( ω ⃗ F × R ⃗ O P i F ) = ∑ i N m P i ⋅ R ⃗ O P i F × ( − R ⃗ O P i F × ω ⃗ F ) = ∑ i N m P i ⋅ R ⃗ ~ O P i F ( − R ⃗ ~ O P i F ) ω ⃗ F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( -\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{\omega}^F \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\left( -\tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\vec{\omega}^F H ΣM/OF=iNmPiR OPiF×(ω F×R OPiF)=iNmPiR OPiF×(R OPiF×ω F)=iNmPiR ~OPiF(R ~OPiF)ω F。进而得出: ⇒ [ I ] = ∑ i N m P i ⋅ R ⃗ ~ O P i F ( − R ⃗ ~ O P i F ) \Rightarrow \left[ I \right] =\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\left( -\tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)} [I]=iNmPiR ~OPiF(R ~OPiF)

2.2.4 牛顿-欧拉方程 Netwon-Euler equation

刚体动力学中常用:
{ F ⃗ Σ M F = m t o t a l ⋅ a ⃗ G F M ⃗ Σ M / G F = [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) \begin{cases} \vec{F}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}\\ \vec{M}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right)\\ \end{cases} {F ΣMF=mtotala GFM ΣM/GF=[I]ΣM/GFα MF+ω MF×([I]ΣM/GFω MF)

2.3 惯性矩阵的转换 Inertia-Matrix Transformation

对于空间中的运动刚体而言,刚体的惯性矩阵一般会根据运动坐标系 { M }    \left\{ M \right\} \,\, {M}的基矢量为基底进行计算,而不会直接考虑运动刚体在固定坐标系 { F }    \left\{ F \right\} \,\, {F}下的惯性矩阵。此时运动坐标系 { M }    \left\{ M \right\} \,\, {M}下计算得出的惯性矩阵记为: [ I ] M \left[ I \right] ^M [I]M。若运动坐标系 { M }    \left\{ M \right\} \,\, {M}与固定坐标系 { F }    \left\{ F \right\} \,\, {F}的基矢量满足: [ i ⃗ M j ⃗ M k ⃗ M ] = [ Q M F ] T [ I ^ J ^ K ^ ] \left[ \begin{array}{c} \vec{i}^M\\ \vec{j}^M\\ \vec{k}^M\\ \end{array} \right] =\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] i Mj Mk M =[QMF]T I^J^K^ ,其中 [ Q M F ] T \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [QMF]T转换矩阵Transition Matrix,为正交矩阵Orthogonal Matrix(满足 [ Q M F ] T = [ Q M F ] − 1 = [ Q F M ] \left[ Q_{\mathrm{M}}^{F} \right] ^T=\left[ Q_{\mathrm{M}}^{F} \right] ^{-1}=\left[ Q_{\mathrm{F}}^{M} \right] [QMF]T=[QMF]1=[QFM]), [ Q M F ] \left[ Q_{\mathrm{M}}^{F} \right] [QMF]又称旋转矩阵Rotation~Matrix
(一个向量乘以一个正交阵,相当于对这个向量进行旋转)。也揭示了该矩阵的两个作用:基底转换(转换矩阵 [ Q M F ] T \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [QMF]T)与向量旋转(旋转矩阵 [ Q M F ] \left[ Q_{\mathrm{M}}^{F} \right] [QMF]),则考虑最开始的图有:
在这里插入图片描述
R ⃗ P i F = R ⃗ M F + [ Q M F ] R ⃗ P i M \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} R PiF=R MF+[QMF]R PiM

进而分析惯性矩阵,若 O O O 点与固定坐标系原点 F F F 重合,则有:
[ I ] Σ M F = ∑ i N m P i ⋅ [ ( R ⃗ P i F ) T R ⃗ P i F ⋅ E − R ⃗ P i F ( R ⃗ P i F ) T ] = ∑ i N m P i ⋅ [ ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) T ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) ⋅ E − ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) T ] = { m t o t a l ⋅ [ ( R ⃗ M F ) T R ⃗ M F ⋅ E − R ⃗ M F ( R ⃗ M F ) T ] ⏟ [ I 1 ] Σ M F + [ Q M F ] ( ∑ i N m P i ⋅ [ ( R ⃗ P i M ) T R ⃗ P i M ⋅ E − R ⃗ P i M ( R ⃗ P i M ) T ] ) [ Q M F ] T + ⏟ [ I 2 ] Σ M F m t o t a l ⋅ [ ( R ⃗ M F ) T ( [ Q M F ] R ⃗ C o M M ) ⋅ E − R ⃗ M F ( [ Q M F ] R ⃗ C o M M ) T ] ⏟ [ I 3 ] Σ M F + m t o t a l ⋅ [ ( [ Q M F ] R ⃗ C o M M ) T R ⃗ M F ⋅ E − ( [ Q M F ] R ⃗ C o M M ) ( R ⃗ M F ) T ] ⏟ [ I 4 ] Σ M F = [ I 1 ] Σ M F + [ I 2 ] Σ M F + [ I 3 ] Σ M F + [ I 4 ] Σ M F \begin{split} \left[ I \right] _{\Sigma _{\mathrm{M}}}^{F}&=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) ^T\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) ^T \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \cdot E-\left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \\ &=\left\{ \begin{array}{c} \begin{array}{c} \underbrace{m_{\mathrm{total}}\cdot \left[ \left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{M}}^{F}\cdot E-\vec{R}_{\mathrm{M}}^{F}\left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}} \right] }\\ \left[ I_1 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}+\\ \begin{array}{c} \underbrace{\left[ Q_{\mathrm{M}}^{F} \right] \left( \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \right) \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}+}\\ \left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}\\ \begin{array}{c} \underbrace{m_{\mathrm{total}}\cdot \left[ \left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}}\left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) \cdot E-\vec{R}_{\mathrm{M}}^{F}\left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) ^{\mathrm{T}} \right] }\\ \left[ I_3 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}+\\ \begin{array}{c} \underbrace{m_{\mathrm{total}}\cdot \left[ \left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) ^T\vec{R}_{\mathrm{M}}^{F}\cdot E-\left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) \left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}} \right] }\\ \left[ I_4 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}\\ \end{array} \right. \\ &=\left[ I_1 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I_3 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I_4 \right] _{\Sigma _{\mathrm{M}}}^{F} \end{split} [I]ΣMF=iNmPi[(R PiF)TR PiFER PiF(R PiF)T]=iNmPi[(R MF+[QMF]R PiM)T(R MF+[QMF]R PiM)E(R MF+[QMF]R PiM)(R MF+[QMF]R PiM)T]= mtotal[(R MF)TR MFER MF(R MF)T][I1]ΣMF+ [QMF](iNmPi[(R PiM)TR PiMER PiM(R PiM)T])[QMF]T+[I2]ΣMF mtotal[(R MF)T([QMF]R CoMM)ER MF([QMF]R CoMM)T][I3]ΣMF+ mtotal[([QMF]R CoMM)TR MFE([QMF]R CoMM)(R MF)T][I4]ΣMF=[I1]ΣMF+[I2]ΣMF+[I3]ΣMF+[I4]ΣMF

其中, [ I 2 ] Σ M F = [ Q M F ] ( ∑ i N m P i ⋅ [ ( R ⃗ P i M ) T R ⃗ P i M ⋅ E − R ⃗ P i M ( R ⃗ P i M ) T ] ) [ Q M F ] T = [ Q M F ] [ I ] Σ M M [ Q M F ] T \left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \right) \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}=\left[ Q_{\mathrm{M}}^{F} \right] \left[ I \right] _{\Sigma _{\mathrm{M}}}^{M}\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [I2]ΣMF=[QMF](iNmPi[(R PiM)TR PiMER PiM(R PiM)T])[QMF]T=[QMF][I]ΣMM[QMF]T,对上式进行讨论:

  • 纯回转: R ⃗ M F = 0 \vec{R}_{\mathrm{M}}^{F}=0 R MF=0时,化简为:
    [ I ] Σ M F ∣ R ⃗ M F = 0 = [ I 2 ] Σ M F = [ Q M F ] ( ∑ i N m P i ⋅ [ ( R ⃗ P i M ) T R ⃗ P i M ⋅ E − R ⃗ P i M ( R ⃗ P i M ) T ] ) [ Q M F ] T = [ Q M F ] [ I ] Σ M M [ Q M F ] T \left. \left[ I \right] _{\Sigma _{\mathrm{M}}}^{F} \right|_{\vec{\mathrm{R}}_{\mathrm{M}}^{F}=0}=\left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \right) \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}=\left[ Q_{\mathrm{M}}^{F} \right] \left[ I \right] _{\Sigma _{\mathrm{M}}}^{M}\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [I]ΣMF R MF=0=[I2]ΣMF=[QMF](iNmPi[(R PiM)TR PiMER PiM(R PiM)T])[QMF]T=[QMF][I]ΣMM[QMF]T
  • 纯移动: R ⃗ M F ≠ 0 \vec{R}_{\mathrm{M}}^{F}\ne 0 R MF=0 [ Q M F ] = E \left[ Q_{\mathrm{M}}^{F} \right] =E [QMF]=E时,化简为:
    [ I ] Σ M F ∣ R ⃗ M F ≠ 0 , [ Q M F ] = E = [ I 1 ] Σ M F + [ I ] Σ M M \left. \left[ I \right] _{\Sigma _{\mathrm{M}}}^{F} \right|_{\vec{\mathrm{R}}_{\mathrm{M}}^{F}\ne 0,\left[ Q_{\mathrm{M}}^{F} \right] =\mathrm{E}}=\left[ I_1 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}}^{M} [I]ΣMF R MF=0,[QMF]=E=[I1]ΣMF+[I]ΣMM
    上式也称为惯性矩阵的平行轴定理Parallel Axis Theorem
  • 运动坐标系原点与质心点重合: R ⃗ C o M F = 0 \vec{R}_{\mathrm{CoM}}^{F}=0 R CoMF=0时,化简为:
    [ I ] F ∣ R ⃗ C o M F = 0 = [ I 1 ] + [ I 2 ] \left. \left[ I \right] ^F \right|_{\vec{R}_{\mathrm{CoM}}^{F}=0}=\left[ I_1 \right] +\left[ I_2 \right] [I]F R CoMF=0=[I1]+[I2]

2.4 惯性矩阵的主轴定理} Principal Axis Theorem

进一步观察惯性矩阵:
[ I ] M = [ ∑ i N m P i ⋅ [ ( y P i M ) 2 + ( z P i M ) 2 ] − ∑ i N m P i ⋅ x P i M y P i M − ∑ i N m P i ⋅ ( x P i M z P i M ) − ∑ i N m P i ⋅ ( y P i M x P i M ) ∑ i N m P i ⋅ [ ( x P i M ) 2 + ( z P i M ) 2 ] − ∑ i N m P i ⋅ ( y P i M z P i M ) − ∑ i N m P i ⋅ ( z P i M x P i M ) − ∑ i N m P i ⋅ ( z P i M y P i M ) ∑ i N m P i ⋅ [ ( x P i M ) 2 + ( y P i M ) 2 ] ] \left[ I \right] ^M=\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2+\left( z_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{P}_{\mathrm{i}}}^{M}y_{\mathrm{P}_{\mathrm{i}}}^{M}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{P}_{\mathrm{i}}}^{M}z_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{P}_{\mathrm{i}}}^{M}x_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2+\left( z_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{P}_{\mathrm{i}}}^{M}z_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{P}_{\mathrm{i}}}^{M}x_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{P}_{\mathrm{i}}}^{M}y_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2+\left( y_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2 \right]}\\ \end{matrix} \right] [I]M= iNmPi[(yPiM)2+(zPiM)2]iNmPi(yPiMxPiM)iNmPi(zPiMxPiM)iNmPixPiMyPiMiNmPi[(xPiM)2+(zPiM)2]iNmPi(zPiMyPiM)iNmPi(xPiMzPiM)iNmPi(yPiMzPiM)iNmPi[(xPiM)2+(yPiM)2] ,为对称矩阵Symmetric Matrix(此时默认 M M M 点与 F F F 点重合),则一定能够对角化。

等价于找到另一原点与 M M M 重合的坐标系 B B B ,使得: [ I ] B = [ I x x B 0 0 0 I y y B 0 0 0 I z z B ] \left[ I \right] ^B=\left[ \begin{matrix} I_{\mathrm{xx}}^{B}& 0& 0\\ 0& I_{\mathrm{yy}}^{B}& 0\\ 0& 0& I_{\mathrm{zz}}^{B}\\ \end{matrix} \right] [I]B= IxxB000IyyB000IzzB ,根据矩阵对角化Matrix Diagonalizing的原理,结合纯回转推导可得:
[ I ] M = [ Q B M ] [ I ] B [ Q B M ] T \left[ I \right] ^M=\left[ Q_{\mathrm{B}}^{M} \right] \left[ I \right] ^B\left[ Q_{\mathrm{B}}^{M} \right] ^{\mathrm{T}} [I]M=[QBM][I]B[QBM]T

其中:

  • [ Q B M ] \left[ Q_{\mathrm{B}}^{M} \right] [QBM] 满足 [ i ⃗ B j ⃗ B k ⃗ B ] = [ Q B M ] T [ i ⃗ M j ⃗ M k ⃗ M ] \left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] =\left[ Q_{\mathrm{B}}^{M} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^M\\ \vec{j}^M\\ \vec{k}^M\\ \end{array} \right] i Bj Bk B =[QBM]T i Mj Mk M
  • ( I x x B , I y y B , I z z B ) \left( I_{\mathrm{xx}}^{B},I_{\mathrm{yy}}^{B},I_{\mathrm{zz}}^{B} \right) (IxxB,IyyB,IzzB) 为矩阵 [ I ] M \left[ I \right] ^M [I]M特征值Eigenvalue
  • [ Q B M ] \left[ Q_{\mathrm{B}}^{M} \right] [QBM] 为对应于特征值矩阵 [ I ] B \left[ I \right] ^B [I]B特征基Standard Eigenvalue Basis(列向量);

在这里插入图片描述

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1371918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL 从零开始:04 增删改查

文章目录 1、准备工作2、insert 增加数据2.1 添加所有列的数据2.2 添加部分列2.3 一次插入多条数据 3、delete 删除记录4、update 更新记录5、select 查询记录5.1 查询所有行所有列5.2 查询指定行的所有列5.3 查询所有行的指定列5.4 查询指定行的指定列 在上一小节中介绍了 MyS…

狄克逊(Dixon)检验

目录 1.介绍:2.效果:小结: 1.介绍: 狄克逊检验法是一种用于检测异常值的统计方法,它是一种非参数的方法,可以有效地寻找数据集中不正常的观测值。该方法由美国统计学家布鲁斯E狄克逊(Bruce E. …

代理IP连接不上?网速过慢?自检与应对方法来了

当您使用代理时,您可能会遇到不同的代理错误代码显示代理IP连不通、访问失败、网速过慢等种种问题。 在本文中中,我们将讨论您在使用代理IP时可能遇到的常见错误、发生这些错误的原因以及解决方法。 一、常见代理服务器错误 当您尝试访问网站时&#…

【题解】—— LeetCode一周小结1

1.经营摩天轮的最大利润 题目链接: 1599. 经营摩天轮的最大利润 你正在经营一座摩天轮,该摩天轮共有 4 个座舱 ,每个座舱 最多可以容纳 4 位游客 。你可以 逆时针 轮转座舱,但每次轮转都需要支付一定的运行成本 runningCost 。摩…

任务管理器的 top

文章目录 任务管理器的 top常规使用显示完整命令设置信息更新次数设置信息更新时间显示指定的进程信息指定用户的进程信息更多信息 任务管理器的 top top命令比较像Windows里面的任务管理器,提供一个动态实时的系统状态检测,可以检测实时显示内存、CPU、…

openGauss学习笔记-193 openGauss 数据库运维-常见故障定位案例-备机卡住-数据库只读

文章目录 openGauss学习笔记-193 openGauss 数据库运维-常见故障定位案例-备机卡住-数据库只读193.1 switchover操作时,主机降备卡住193.1.1 问题现象193.1.2 原因分析193.1.3 处理办法 193.2 磁盘空间达到阈值,数据库只读193.2.1 问题现象193.2.2 原因分…

不定期更新免费签|在线安装全能签轻松签万能签GBOX魔力签喵喵签|赶快白嫖

使用Safari浏览器打开 1.打开平台ios.hccld.com点击应用后的“获取”获取设备UDID,获取后在我的里上就会显示设备UDID信息。 2.点我的-购买证书,选择需要购买的证书进行购买。 3.点击“兑换证书”,输入购买的兑换码。 4.选择你要安装的签名安…

大模型PEFT技术原理(一):BitFit、Prefix Tuning、Prompt Tuning

随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning&#x…

论文封面表格制作

原文参考:【【论文排版】论文封面完美对齐 强迫症重度患者的经验分享】https://www.bilibili.com/video/BV18f4y1p7hc?vd_source046491acdcff4b39fed20406b36a93e2 视频里up主介绍很详细。我自己也记录一下。 介绍一下如何完成论文封面信息的填写。 创建一个3列…

「服务器」4.新手小白如何安装服务器环境-宝塔

刚开始初始化好的服务器,使用了阿里云客户端,看着网络脚本乱装,后来决定宝塔环境发现有重复的环境,遂决定重新初始化一下,然后重头干起。 重置服务器 将服务器关闭运行状态后,点击重新初始化云盘即可重新初…

【模拟IC学习笔记】 PSS和Pnoise仿真

目录 PSS Engine Beat frequency Number of harmonics Accuracy Defaults Run tranisent?的3种设置 Pnoise type noise Timeaverage sampled(jitter) Edge Crossing Edge Delay Sampled Phase sample Ratio 离散时间网络(开关电容电路)的噪声仿真方法 PSS PSS…

Windows11 - Ubuntu 双系统及 ROS、ROS2 安装

系列文章目录 前言 一、Windows11 - Ubuntu 双系统安装 硬件信息: 设备名称 DESKTOP-B62D6KE 处理器 13th Gen Intel(R) Core(TM) i5-13500H 2.60 GHz 机带 RAM 40.0 GB (39.8 GB 可用) 设备 ID 7673EF86-8370-41D0-8831-84926668C05A 产品 ID 00331-10000-0000…

c++学习笔记-STL案例-机房预约系统1-需求分析

1 机房预约系统需求 1.1 简单介绍 学校有几个规格不同的机房,由于使用经常出现“撞车”现象,现在开发一套预约系统,解决这一问题。 1.2 身份介绍 分别有三种身份使用该系统 学生代表:申请使用机房教师:审核学生的…

【Wordpress高级教程】 Wordpress免插件建立站群,wordpress整站迁移/安装

提示:该方法适用于Wordpress的站点,且无需插件哦(插件一般都需要付费的,博主比较穷,我们就通过技术来解决) 文章目录 前言一、准备工作二、搭建站群1.打包wp-content2.导入新站点3.导出数据库4.修改数据库配…

JSON数据处理

1.添加json依赖 springmvc 默认使用jackson作为json类库,不需要修改applicationContext-servlet.xml任何配置&#xff0c;只需引入以下类库springmvc就可以处理json数据&#xff1a; <!--spring-json依赖--> <dependency><groupId>com.fasterxml.jackson.c…

【mysql】—— 用户管理

目录 &#xff08;一&#xff09;为什么要有用户管理&#xff1f; &#xff08;二&#xff09;用户 2.1 查看用户信息 2.2 创建用户 2.3 删除用户 2.4 修改用户密码 &#xff08;三&#xff09;数据库的权限 3.1 给用户授权 3.2 回收权限 &#xff08;一&#xff09;为…

Wordpress网站开发问题解决——除了主页之外的所有页面都是“找不到页面内容”(修复记录)

一条纯经验操作 引言慌火上浇油后台查看 解决之路结尾 引言 最近 阿里云老是提醒我边缘计算机控制升级 我自己建立了一个网站&#xff0c;用的就是阿里云的万网服务器 所以 我去看看 结果跟我没什么关系 本以为就这么愉快地结束了 没想到 我建立的网站就只能打开主页 其他页…

MongoDB查找命令find,让数据返回称心如意

业务系统接入数据库后&#xff0c;每天都有大量的数据写入数据库。面对逐日增加的数据&#xff0c;开发人员或数据分析人员&#xff0c;该如何读取数据&#xff0c;怎样设置条件&#xff0c;从数据库中查询数据&#xff1f; 本文基于mongodb的官方文档&#xff0c;整理出find命…

美创科技第59号安全实验室最新力作!《内网渗透实战攻略》出版发行

总结先进攻防实战经验&#xff0c;基于创新入侵生命周期模型&#xff0c;为提升渗透实战能力提供系统操作教程&#xff01;近期&#xff0c;美创科技创始人&CEO柳遵梁&#xff0c;美创第59号安全实验室&#xff08;王月兵、覃锦端、毛菲、刘聪等&#xff09;撰写的新书《内…

RockMQ面试题(1)

为什么要使用MQ 应用解耦&#xff1a;系统的耦合性越高&#xff0c;容错性就越低。以电商应用为例&#xff0c;用户创建订单后&#xff0c;如果耦合调用库存系统、物流 系统、支付系统&#xff0c;任何一个子系统出了故障或者因为升级等原因暂时不可用&#xff0c;都会造成下单…