STL-vector

news2024/10/6 22:22:35

目录

1.vector的介绍及使用

1.1 vector的介绍

1.2 vector的使用

 1.2.1 vector的定义

1.2.2 vector iterator 的使用

1.2.3 vector 空间增长问题

 1.2.3 vector 增删查改

1.2.4 vector 迭代器失效问题。(重点)

1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、 push_back等。

 2. 指定位置元素的删除操作--erase

 3. 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

 4. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

 5.总结以及解决办法


1.vector的介绍及使用

1.1 vector的介绍

vector的文档介绍

1. vector是表示可变大小数组的序列容器

2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素 进行访问和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理

3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小

4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存 储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是 对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。

5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。

6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list 统一的迭代器和引用更好。

使用STL的三个境界:能用,明理,能扩展 ,

1.2 vector的使用

vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常 见的接口就可以,下面列出了哪些接口是要重点掌握的。

 1.2.1 vector的定义

构造函数声明接口说明
vector()(重点)无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化n个val
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器(任意类型)进行初始化构造

1.2.2 vector iterator 的使用

iterator的使用接口说明
begin + end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置 的iterator/const_iterator
rbegin+rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的 reverse_iterator

1.2.3 vector 空间增长问题

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize改变vector的size
reverse改变vector的capacity
  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的g++是按2倍增长的。 这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义 的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问 题。
  • resize在开空间的同时还会进行初始化,影响size
// 测试vector的默认扩容机制
void TestVectorExpand()
{
 size_t sz;
 vector<int> v;
 sz = v.capacity();
 cout << "making v grow:\n";
 for (int i = 0; i < 100; ++i) 
 {
 v.push_back(i);
 if (sz != v.capacity()) 
 {
 sz = v.capacity();
 cout << "capacity changed: " << sz << '\n';
 }
 }
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141

g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128

// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
 vector<int> v;
 size_t sz = v.capacity();
 v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
 cout << "making bar grow:\n";
 for (int i = 0; i < 100; ++i) 
 {
 v.push_back(i);
 if (sz != v.capacity())
 {
 sz = v.capacity();
 cout << "capacity changed: " << sz << '\n';
 }
 }
}

 1.2.3 vector 增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back(重点)尾删
find查找
insert在position前插入val
erase删除position位置的数据
swap交换两个vector的数据空间

operator[](重点)

像数组一样访问

1.2.4 vector 迭代器失效问题。(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了 封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的 空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器, 程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有:

1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、 push_back等。
#include <iostream>
using namespace std;
#include <vector>
int main()
{
 vector<int> v{1,2,3,4,5,6};
 
 auto it = v.begin();
 
 // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
 // v.resize(100, 8);
 
 // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
 // v.reserve(100);
 
 // 插入元素期间,可能会引起扩容,而导致原空间被释放
 // v.insert(v.begin(), 0);
 // v.push_back(8);
 
 // 给vector重新赋值,可能会引起底层容量改变
 v.assign(100, 8);
 
 /*
 出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
 解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
 */
 while(it != v.end())
 {
 cout<< *it << " " ;
 ++it;
 }
 cout<<endl;
 return 0;
}
 2. 指定位置元素的删除操作--erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{
 int a[] = { 1, 2, 3, 4 };
 vector<int> v(a, a + sizeof(a) / sizeof(int));
 // 使用find查找3所在位置的iterator
 vector<int>::iterator pos = find(v.begin(), v.end(), 3);
 // 删除pos位置的数据,导致pos迭代器失效。
 v.erase(pos);
 cout << *pos << endl; // 此处会导致非法访问
 return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代 器不应该会失效,

但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是 没有元素的,那么pos就失效了。

因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效 了。 以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,那个是错误的。

#include <iostream>
using namespace std;
#include <vector>
int main()
{
 vector<int> v{ 1, 2, 3, 4 };
 auto it = v.begin();
 while (it != v.end())
 {
 if (*it % 2 == 0)
 v.erase(it);
 ++it;
 }
 
 return 0;
}
int main()
{
 vector<int> v{ 1, 2, 3, 4 };
 auto it = v.begin();
 while (it != v.end())
 { 
    if (*it % 2 == 0)
    it = v.erase(it);//erase函数返回删除位置
     else
     ++it;
     }
     return 0;
}

 第一个代码是错误的,第二个代码是正确的

第一个代码

 第二个代码

 3. 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
 vector<int> v{1,2,3,4,5};
 for(size_t i = 0; i < v.size(); ++i)
 cout << v[i] << " ";
 cout << endl;
 auto it = v.begin();
 cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
 // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 
 v.reserve(100);
 cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
 
 // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
 // 虽然可能运行,但是输出的结果是不对的
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
}


程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5
// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{
 vector<int> v{1,2,3,4,5};
 vector<int>::iterator it = find(v.begin(), v.end(), 3);
 v.erase(it);
cout << *it << endl;
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
}
程序可以正常运行,并打印:
4
4 5
 
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
 vector<int> v{1,2,3,4,5};
 // vector<int> v{1,2,3,4,5,6};
 auto it = v.begin();
 while(it != v.end())
 {
 if(*it % 2 == 0)
 v.erase(it);
 ++it;
 }
 for(auto e : v)
 cout << e << " ";
 cout << endl;
 return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault

 从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不 对,如果it不在begin和end范围内,肯定会崩溃的。

 4. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#include <string>
void TestString()
{
 string s("hello");
 auto it = s.begin();
 // 放开之后代码会崩溃,因为resize到20会string会进行扩容
 // 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
 // 后序打印时,再访问it指向的空间程序就会崩溃
 //s.resize(20, '!');
 while (it != s.end())
 {
 cout << *it;
 ++it;
 }
 cout << endl;
 it = s.begin();
 while (it != s.end())
 {
 it = s.erase(it);
 // 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
 // it位置的迭代器就失效了
 // s.erase(it); 
 ++it;
 }
}
 5.总结以及解决办法

改变内存的容量以及insert与erase迭代器对象后,会导致迭代器失效

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1371670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++:多态究竟是什么?为何能成为面向对象的重要手段之一?

C&#xff1a;多态究竟是什么&#xff1f;为何能成为面向对象的重要手段之一&#xff1f; 前言一、多态的概念二、多态的定义及实现2.1 多态的构成条件2. 2 虚函数2.3 虚函数的重写2.3.1 虚函数重写的例外1&#xff1a;协变(基类与派生类虚函数返回值类型不同)2.3.2 虚函数重写…

【信息论与编码】【北京航空航天大学】实验一、哈夫曼编码【C语言实现】(上)

信息论与编码 实验1 哈夫曼编码 实验报告 一、运行源代码所需要的依赖&#xff1a; 1、硬件支持 Windows 10&#xff0c;64位系统 2、编译器 DEV-Redpanda IDE&#xff0c;小熊猫C 二、算法实现及测试 1、C语言源程序 # define _CRT_SECURE_NO_WARNINGS # include <std…

江山易改本性难移之ZYNQ SDK FSBL加载启动代码详解

SDK版本&#xff1a;2018.3 写在前面&#xff1a; 该文档不足以使你清楚FSBL启动的寄存器级的操作细节&#xff0c;但可以让你看明白整个ZYNQ7000 FSBL代码执行的主要流程。 1. ZYNQ7000加载启动流程 &#xff08;1&#xff09;BootRom阶段为ARM上电后最早加载的代码&#x…

Android SDK环境搭建

一、Android SDK简介 SDK&#xff1a;&#xff08;software development kit&#xff09;软件开发工具包。被软件开发工程师用于为特定的软件包、软件框架、硬件平台、操作系统等建立应用软件的开发工具的集合。 因此&#xff0c;Android SDK 指的是Android专属的软件…

【Scala】——函数式编程

1 面向对象编程和函数式编程 1.1 面向对象编程 解决问题&#xff0c;分解对象&#xff0c;行为&#xff0c;属性&#xff0c;然后通过对象的关系以及行为的调用来解决问题。 • 对象&#xff1a;用户 • 行为&#xff1a;登录、连接 JDBC、读取数据库 • 属性&#xff1a;用户…

内裤洗衣机有用吗?五款小型洗衣机全自动推荐

随着内衣洗衣机的流行&#xff0c;很多小伙伴在纠结该不该入手一款内衣洗衣机&#xff0c;专门来洗一些贴身衣物&#xff0c;答案是非常有必要的&#xff0c;因为我们现在市面上的大型洗衣机只能做清洁&#xff0c;无法对我们的贴身衣物进行一个高强度的清洁&#xff0c;而小小…

Linux运维之切换到 root 用户

春花秋月何时了,往事知多少。此付费专栏不要订阅,不要订阅,听人劝。 🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄 🌹简历模板、学习资料、面试题库、技术互助 🌹文末获取联系方式 📝 系列专栏目录 [Java项目实战] 介绍Java…

C/C++ 位段

目录 什么是位段&#xff1f; 位段的内存分配 位段的跨平台问题 什么是位段&#xff1f; 位段的声明与结构是类似的&#xff0c;但是有两个不同&#xff1a; 位段的成员必须是 int、unsigned int 或signed int 等整型家族。位段的成员名后边有一个冒号和一个数字 这是一个…

JPEG格式详解Baseline、Progressive的区别

文章目录 JPEG的简介压缩质量/压缩比率色彩空间基线和渐进子采样存储选项 基线和渐进基线格式渐进格式&#xff1a; 子采样4:4:4&#xff08;无损&#xff09;4:2:24:2:0 JPEG的简介 JPEG&#xff08;Joint Photographic Experts Group&#xff09;是一种常见的图像压缩格式&a…

K8S 存储卷

意义&#xff1a;存储卷----数据卷 容器内的目录和宿主机的目录进行挂载 容器在系统上的生命周期是短暂的&#xff0c;delete,k8s用控制器创建的pod&#xff0c;delete相当于重启&#xff0c;容器的状态也会回复到初始状态 一旦回到初始状态&#xff0c;所有的后天编辑的文件…

原来这些小众知识库软件这么好用,挖到宝了

在企业管理中&#xff0c;知识库的作用越来越被重视。它不仅可以提高工作流程的效率&#xff0c;还可以最大限度地利用企业中的知识资源。然而&#xff0c;在众多的知识库工具中选择一款合适的并非易事。不用担心&#xff0c;今天我要为大家揭晓一些小众却非常好用的知识库软件…

C语言之详解数组【附三子棋和扫雷游戏实战】

文章目录 一、一维数组的创建和初始化1、数组的创建2、数组的初始化3、一维数组的使用4、 一维数组在内存中的存储 二、二维数组的创建和初始化1、二维数组的创建2、二维数组的初始化3、二维数组的使用4、二维数组在内存中的存储 三、数组越界边界值考虑不当导致越界访问数组大…

如何利用CHAT做简单的总结体会?

问CHAT &#xff1a;在测试过程中使用appiumpython自动化的优点和体会 CHAT回复&#xff1a;使用 Appium 配合 Python 进行自动化测试主要有以下几点优点&#xff1a; 1. 跨平台性&#xff1a;Appium 支持 iOS 和 Android 平台的应用自动化测试&#xff0c;无论是原生应用、移…

开放平台系统架构设计

一、概述 背景与目标 本开放平台旨在构建一个可扩展、高可用的生态体系&#xff0c;通过提供统一标准的API接口和SDK工具包&#xff0c;让第三方开发者能够安全、高效地接入我们的服务和资源&#xff0c;实现业务的互联互通。 定位与功能描述 系统主要包含用户认证授权、资…

[C#]winform部署PaddleOCRV3推理模型

【官方框架地址】 https://github.com/PaddlePaddle/PaddleOCR.git 【算法介绍】 PaddleOCR是由百度公司推出的一款开源光学字符识别&#xff08;OCR&#xff09;工具&#xff0c;它基于深度学习框架PaddlePaddle开发。这款工具提供了一整套端到端的文字检测和识别解决方案&a…

OpenHarmony之hdc

OpenHarmony之hdc 简介 hdc&#xff08;OpenHarmony Device Connector&#xff09;是 OpenHarmony 为开发人员提供的用于调试的命令行工具&#xff0c;通过该工具可以在Windows/Linux/MacOS等系统上与开发机或者模拟器进行交互。 类似于Android的adb&#xff0c;和adb类似&a…

如何使用web文件管理器Net2FTP搭建个人网盘

文章目录 1.前言2. Net2FTP网站搭建2.1. Net2FTP下载和安装2.2. Net2FTP网页测试 3. cpolar内网穿透3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 文件传输可以说是互联网最主要的应用之一&#xff0c;特别是智能设备的大面积使用&#xff0c;无论是个人…

智能时代:自然语言生成SQL与知识图谱问答实战

语义解析 前言语义解析的应用场景总结概论语义解析和大模型的关系延伸阅读 前言 语义解析技术可以提高人机交互的效率和准确性&#xff0c;在自然语言处理、数据分析、智能客服、智能家居等领域都有广泛的应用前景。特别是在大数据时代&#xff0c;语义解析能够帮助企业更快速…

pc下载apk文件到andriod开发板,并实现可视化

PC端安装APK下载器 点击下载 刷机精灵APK安装器 界面如下&#xff0c;可将下载好的apk文件&#xff0c;直接拖拽到该界面&#xff0c;然后点击安装全部按钮进行安装&#xff0c;安装过程中的具体状态会显示在具体的apk后面。 如下图&#xff0c;安装错误、安装完成等皆为apk安…