理论U3 决策树

news2025/1/16 6:58:46

文章目录

  • 一、决策树算法
    • 1、基本思想
    • 2、构成
      • 1)节点
      • 3)有向边/分支
    • 3、分类步骤
      • 1)第1步-决策树生成/学习、训练
      • 2)第2步-分类/测试
    • 4、算法关键
  • 二、信息论基础
    • 1、概念
    • 2、信息量
    • 3、信息熵:
  • 二、ID3 (Iterative Dichotomiser 3)算法
    • 1、基本思想:
    • 2、熵引入
      • 1)经验熵
      • 2)条件熵
      • 3)经验条件熵
      • 4)信息增益(information gain)
    • 3、算法
    • 4、算法案例
    • 5、算法特点
  • 三、ID3算法问题
    • 1、 属性筛选度量标准
    • 2、 剪枝处理
      • 1)问题
      • 2)解决
      • 3)案例
    • 3、 连续值处理
    • 4、 缺失值处理
    • 5、不同代价属性的处理

一、决策树算法

1、基本思想

基本思想:采用自顶向下的递归方法,(以信息熵为度量)构造一棵(熵值下降最快的)树,(到叶子节点处的熵值为零)此时每个叶节点中的实例都属于同一类

2、构成

决策树是一种树型结构,由结点和有向边组成

1)节点

  1. 内部结点表示一个属性或特征
  2. 叶结点代表一种类别

3)有向边/分支

分支代表一个测试输出

3、分类步骤

1)第1步-决策树生成/学习、训练

利用训练集建立(并精化)一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程

step 1:选取一个属性作为决策树的根结点,然后就这个属性所有的取值创建树的分支。
step 2:用这棵树来对训练数据集进行分类:

  1. 如果一个叶结点的所有实例都属于同一类,则以该类为标记标识此叶结点。
  2. 如果所有的叶结点都有类标记,则算法终止
    step 3:否则,选取一个从该结点到根路径中没有出现过的属性为标记标识该结点,然后就这个属性所有的取值继续创建树的分支;重复算法步骤step 2

2)第2步-分类/测试

利用生成的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。

4、算法关键

建立决策树的关键,即在当前状态下选择哪个属性作为分类依据

目标:每个分支节点的样本尽可能属于同一类别,即节点的“纯度”(purity)越来越高;最具区分性的属性!
根据不同目标函数,建立决策树主要有以下三种算法
◼ ID3: 信息增益
◼ C4.5: 信息增益率
◼ CART:基尼指数

二、信息论基础

1、概念

信息论与概率统计中,熵表示随机变量不确定性的大小,是度量样本集合纯度最常用的一种指标

2、信息量

信息量:具有确定概率事件的信息的定量度量
定义: I ( x ) = − l o g 2 p ( x ) I(x)=-log_2p(x) I(x)=log2p(x) 其中p(x)为事件x发生的概率

3、信息熵:

事件集合的信息量的平均值。
定义: H ( x ) = ∑ i h ( x i ) = ∑ i p ( x i ) I ( x i ) = − ∑ i p ( x i ) l o g 2 p ( x i ) H(x) = \sum_{i}h(x_i)=\sum_{i} p(x_i)I(x_i)=-\sum_{i} p(x_i)log_2p(x_i) H(x)=ih(xi)=ip(xi)I(xi)=ip(xi)log2p(xi)

熵定义了一个函数(概率密度函数pdf)到一个值(信息熵)的映射

p ( x ) → H p(x) → H p(x)H (函数→数值)

熵是随机变量不确定性的度量:
◼ 不确定性越大,熵值越大
◼ 若随机变量退化成定值,熵为0
在这里插入图片描述

二、ID3 (Iterative Dichotomiser 3)算法

ID3算法是一种最经典的决策树学习算法。

1、基本思想:

以信息熵为度量,用于决策树节点的属性选择,每次优先选取信息增益最大的属性,亦即能使熵值变为最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0。此时,每个叶子节点对应的实例集中的实例属于同一类。

熵值下降 → 无序变有序

2、熵引入

1)经验熵

假设当前样本集合D 中第c(c=1,2,…,C)类样本所占比例为 p c p_c pc(c=1,2,…,C),则D 的经验信息熵(简称经验熵)定义为:

H ( D ) = − ∑ c = 1 C p c l o g 2 p c = − ∑ c = 1 C D c D l o g 2 D c D H(D)=-\sum_{c=1}^{C}p_clog_2p_c=-\sum_{c=1}^{C}\frac{D_c}{D}log_2\frac{D_c}{D} H(D)=c=1Cpclog2pc=c=1CDDclog2DDc

H(D)的值越小,则D 的纯度越高

2)条件熵

对随机变量 ( X , Y ) (X, Y) (X,Y),联合分布为: p ( X = x i , Y = y i ) = p i j p(X=x_i,Y=y_i)=p_{ij} p(X=xi,Y=yi)=pij

条件熵 H ( Y ∣ X ) H(Y |X ) H(YX) 表示在已知随机变量X 的条件下,随机变量Y的不确定性:

H ( Y ∣ X ) = − ∑ i = 1 n p i H ( Y ∣ X = x i ) H(Y|X)=-\sum_{i=1}^{n}p_iH(Y|X=x_i) H(YX)=i=1npiH(YX=xi)

可证明:条件熵𝐻(Y|X)相当于联合熵𝐻(𝑋,𝑌)减去单独的熵𝐻(X),即
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X)=H(X,Y)-H(X) H(YX)=H(X,Y)H(X)
在这里插入图片描述
在这里插入图片描述

3)经验条件熵

在这里插入图片描述
即特征a的信息对样本D 的信息的不确定性减少的程度

4)信息增益(information gain)

特征 a 对训练数据集 D 的信息增益 G ( D , a ) G(D, a) G(D,a) ,定义为集合D 的经验熵 H(D) 与特征 a 给定条件下 D 的经验条件熵 H ( D ∣ a ) H(D | a) H(Da) 之差,即
G ( D , a ) = H ( D ) − H ( D ∣ a ) = H ( D ) − ∑ n = 1 N D n D H ( D n ) G(D,a)=H(D)-H(D|a)=H(D)-\sum_{n=1}^{N}\frac{D^n}{D}H(D^n) G(D,a)=H(D)H(Da)=H(D)n=1NDDnH(Dn)

ID3算法即是以此信息增益为准则,对每次递归的节点属性进行选择的

3、算法

在这里插入图片描述

4、算法案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、算法特点

最大优点是,它可以自学习:在学习的过程中,不需要使用者了解过多背景知识,只需要对训练实例进行较好的标注,就能够进行学习。

决策树的分类模型是树状结构,简单直观,比较符合人类的理解方式。

可将决策树中到达每个叶节点的路径转换为IF—THEN形式的分类规则,这种形式更有利于理解。

从一类无序、无规则的事物(概念)中推理出决策树表示的分类规则。

三、ID3算法问题

信息增益偏好取值多的属性(分散,极限趋近于均匀分布)

1、 属性筛选度量标准

可能会受噪声或小样本影响,易出现过拟合问题。
结果训练出来的形状是一棵庞大且深度很浅的树,这样的划分是极为不合理的。
改进方法
在这里插入图片描述
在这里插入图片描述

2、 剪枝处理

1)问题

无法处理连续值的属性。

决策树对训练数据有很好的分类能力,但对未知的测试数据未必有好的分类能力,泛化能力弱,即可能发生过拟合现象。

训练数据有噪声,对训练数据拟合的同时也对噪音进行拟合,影响了分类效果。

叶节点样本太少,易出现耦合的规律性,使一些属性恰巧可以很好地分类,但却与实际的目标函数并无关系。

2)解决

剪枝是决策树学习算法中对付“过拟合”的主要手段

  1. 预剪枝策略(pre-pruning)
    决策树生成过程中,对每个节点在划分前进行估计,若划分不能带来决策树泛化性能提升,则停止划分,并将该节点设为叶节点
    优点:预剪枝“剪掉了”很多没必要展开的分支,降低了过拟合的风险,并且显著减少了决策树的训练时间开销和测试时间开销
    劣势:有些分支的当前划分有可能不能提高甚至降低泛化性能,但后续划分有可能提高泛化性能;预剪枝禁止这些后续分支的展开,可能会导致欠拟合

  2. 后剪枝策略(post-pruning)
    先利用训练集生成决策树,自底向上对非叶节点进行考察,若将该叶节点对应子树替换为叶节点能带来泛化性能提升,则将该子树替换为叶节点
    优点:优势:测试了所有分支,比预剪枝决策树保留了更多分支,降低了欠拟合的风险,泛化性能一般优于预剪枝决策树。
    劣势:后剪枝过程在生成完全决策树后在进行,且要自底向上对所有非叶节点逐一评估;因此,决策树的训练时间开销要高于未剪枝决策树和预剪枝决策树

3)案例

在这里插入图片描述
预剪枝算法
在这里插入图片描述
在这里插入图片描述
后剪枝算法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、 连续值处理

无法处理属性值不完整的训练数据
在这里插入图片描述
基本思想:采用二分法(bi-partition)进行离散化
在这里插入图片描述
在这里插入图片描述

4、 缺失值处理

无法处理不同代价的属性
前面假设:所有样本的属性完整
实际情况:存在不完整样本:即样本的某些属性缺失;特别是属性数目较多时
如果简单放弃不完整样本,会导致数据信息的浪费
实际中确实需要属性缺失情况下进行决策
不同代价属性的处理
需要解决的两个问题

  1. 如何在属性值缺失的情况下进行划分属性选择(计算信息增益)?
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. 给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?
    在这里插入图片描述
    案例:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

5、不同代价属性的处理

不同的属性测量具有不同的代价
在属性筛选度量标准中考虑属性的不同代价
优先选择低代价属性的决策树
必要时才依赖高代价属性
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1370965.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于JavaWeb+BS架构+SpringBoot+Vue+Spark的共享单车数据存储系统的设计和实现

基于JavaWebBS架构SpringBootVueSpark的共享单车数据存储系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 第一章 概述 2 1.1课题研究背景 2 1.2 课题研究意义 2 1.3国内…

wy的leetcode刷题记录_Day74

wy的leetcode刷题记录_Day74 声明 本文章的所有题目信息都来源于leetcode 如有侵权请联系我删掉! 时间:2024-01-10 前言 目录 wy的leetcode刷题记录_Day74声明前言2696. 删除子串后的字符串最小长度题目介绍思路代码收获 64. 最小路径和题目介绍思路代码收获 63.…

DataFrame详解

清洗相关的API 清洗相关的API: 1.去重API: dropDupilcates 2.删除缺失值API: dropna 3.替换缺失值API: fillna 去重API: dropDupilcates dropDuplicates(subset):删除重复数据 1.用来删除重复数据,如果没有指定参数subset,比对行中所有字段内容,如果全部相同,则认为是重复数据,…

Maven报错:Malformed \uxxxx encoding 解决办法

maven构建出现这个Malformed \uxxxx encoding问题,应该是maven仓库里面有脏东西进入了! 解决: 将仓库中的resolver-status.properties文件全部干掉。 我使用的everything工具全局搜索resolver-status.properties文件,然后Ctrla,再…

Go语言学习笔记(二)

Go语言的学习资源 以下是一些推荐的Go语言学习资源的链接: Go语言教程:https://golang.org/doc/Go by Example:Go by ExampleGolang Tutorials:https://golangtutorials.com/Go语言第一课(慕课网)&#x…

df -h的值详细介绍

正文: 在 Linux 系统中,了解不同类型的文件系统及其作用是非常重要的。这不仅有助于系统管理,还可以在进行数据存储和优化时做出明智的决策。以下是一个常见的 Linux 文件系统配置的概述,包括每个文件系统的作用和重要性。 操作图片: dev…

Genie Nano-10GigE M/C8200工业相机全面投入生产

6700万像素 业界最小 适用于高性能图像采集 近日,Teledyne DALSA宣布基于Teledyne e2v 67M单色和彩色传感器的Nano-10GigE M8200和C8200工业相机现已进入全面生产阶段。 全新Genie Nano-10GigE 67M相机是业界最小的10GigEVision相机型号,可实现高达14…

快乐学Python,数据分析之获取数据方法「公开数据或爬虫」

学习Python数据分析,第一步是先获取数据,为什么说数据获取是数据分析的第一步呢,显而易见:数据分析,得先有数据,才能分析。 作为个人来说,如何获取用于分析的数据集呢? 1、获取现成…

将dumpbin从Visual Studio中抠出来,并使用dumpbin查看exe和dll库的依赖关系

目录 1、初步说明 2、在开发的机器上使用dumpbin工具查看dll库的依赖关系 3、将dumpbin.exe从Visual Studio中抠出来 3.1、找到dumpbin.exe文件及其依赖的dll文件 3.2、在cmd中运行dumpbin,提示找不到link.exe文件 3.3、再次运行dumpbin.exe提示找不到mspdb10…

2024年第九届机器学习技术国际会议(ICMLT 2024) 即将召开

2024年第九届机器学习技术国际会议(ICMLT 2024)将于2024年5月24-26日在挪威奥斯陆举行。ICMLT 2024旨在讨论机器学习技术领域的最新研究技术现状和前沿趋势,为来自世界各地的科学家、工程师、实业家、学者和其他专业人士提供一个互动和交流的…

【算法】LRU算法

LRU算法 LRU(Least Recently Used) 即最近最少使用,属于典型的内存淘汰机制。 根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”,其思路如下图所示: 该算法需…

了解ASP.NET Core 中的文件提供程序

写在前面 ASP.NET Core 通过文件提供程序来抽象化文件系统访问。分为物理文件提供程序(PhysicalFileProvider)和清单嵌入的文件提供程序(ManifestEmbeddedFileProvider)还有复合文件提供程序(CompositeFileProvider );其中PhysicalFileProvider 提供对物理文件系统…

PPT插件-大珩助手-选择同类

选择同类-颜色 对于选中的形状,一键选中当前页中的所有相同颜色的形状 选择同类-文本 一键选择当前页中的所有文本对象 选择同类-非文本 一键选择当前页中的所有非文本对象 选择同类-反选 一键选择当前页未选择的对象 软件介绍 PPT大珩助手是一款全新设计的…

【读书笔记】《白帽子讲web安全》浏览器安全

目录 第二篇 客户端脚本安全 第2章 浏览器安全 2.1同源策略 2.2浏览器沙箱 2.3恶意网址拦截 2.4高速发展的浏览器安全 第二篇 客户端脚本安全 第2章 浏览器安全 近年来随着互联网的发展,人们发现浏览器才是互联网最大的入口,绝大多数用户使用互联…

【办公类-19-01】20240108图书统计登记表制作(23个班级)EXCEL复制表格并合并表格

背景需求: 制作一个EXCEL模板,每个班级的班主任统计 班级图书量(一个孩子10本,最多35个孩子350本) EXCEL模板 1.0版本: 将这个模板制作N份——每班一份 项目:班级图书统计表 核心:一个EXCEL模板批量生成…

合宙海外模组硬核出击,Air780UAAir780UU全新上市

简介 随着国内市场竞争日趋激烈,企业产品出海已呈如火如荼之势,向外发展拼商机更需硬核优势。 合宙作为物联网行业的核心器件提供商,将逐步推出系列高性价比海外模组,全面助力行业客户出海。现针对亚太、欧洲地区,全…

ChatGPT知名开源项目有哪些

ChatGPT-Next-Web:基于ChatGPT API的私有化部署网页聊天系统 主要功能: 只需在 1 分钟内即可在 Vercel 上一键免费部署,支持私有服务器快速部署,支持使用私有域名支持ChatGPT3.5、4等常见模型Linux/Windows/MacOS 上的紧凑型客户…

【Java】知识——各类编码格式以及样例

一、 #ASCII 码 计算机内所有的信息都是二进制位。一个字节包含 8 个二进制位,可以表示 256 个状态,每个状态表示一个符号。 ASCII 码一共规定了128个字符的编码,比如空格 SPACE 是32(二进制00100000),大写…

Shopee买家通系统:轻松获取虾皮买手号的智能利器

近来,有一款强大的软件引起了广泛关注,它就是Shopee买家通系统,为用户提供了自动化注册虾皮买手号的便捷途径。目前,该软件已覆盖菲律宾、泰国、马来西亚、越南、巴西、印度尼西亚等多个国家,为用户提供更广泛的服务。…