【机器学习】常见算法详解第2篇:K近邻算法各种距离度量(已分享,附代码)

news2025/1/18 7:01:57

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻辑回归,决策树算法,集成学习,聚类算法。K-近邻算法的距离公式,应用LinearRegression或SGDRegressor实现回归预测,应用LogisticRegression实现逻辑回归预测,应用DecisionTreeClassifier实现决策树分类,应用RandomForestClassifie实现随机森林算法,应用Kmeans实现聚类任务。

全套笔记和代码自取地址: https://gitee.com/yinuo112/Technology/tree/master/机器学习/机器学习(算法篇)/1.md

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


共 7 章,44 子模块,总字数:52595


K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.3 距离度量

1 欧式距离**(Euclidean Distance):**

欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。

举例:

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 1.4142    2.8284    4.2426    1.4142    2.8284    1.4142

2 曼哈顿距离(Manhattan Distance):

在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。

举例:

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d =   2     4     6     2     4     2

3 切比雪夫距离 (Chebyshev Distance):

国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离。

举例:

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d =   1     2     3     1     2     1

4 闵可夫斯基距离(Minkowski Distance):

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

image-20190225182628694

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

1 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

2 闵氏距离的缺点:

(1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

(2)未考虑各个分量的分布(期望,方差等)可能是不同的。


5 标准化欧氏距离 (Standardized EuclideanDistance):

标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。

思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。假设样本集X的均值(mean)为m,标准差(standard deviation)为s,X的“标准化变量”表示为:

image-20190213184012294

如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。

举例:

X=[[1,1],[2,2],[3,3],[4,4]];(假设两个分量的标准差分别为0.51)
经计算得:
d =   2.2361    4.4721    6.7082    2.2361    4.4721    2.2361

6 余弦距离(Cosine Distance)

几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。

  • 二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

余弦距离

  • 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦为:

余弦距离

即:

余弦距离

夹角余弦取值范围为[-1,1]。余弦越大表示两个向量的夹角越小,余弦越小表示两向量的夹角越大。当两个向量的方向重合时余弦取最大值1,当两个向量的方向完全相反余弦取最小值-1。

举例:

X=[[1,1],[1,2],[2,5],[1,-4]]
经计算得:
d =   0.9487    0.9191   -0.5145    0.9965   -0.7593   -0.8107

7 汉明距离(Hamming Distance)【了解】:

两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。

例如:

The Hamming distance between "1011101" and "1001001" is 2. 
  The Hamming distance between "2143896" and "2233796" is 3. 
  The Hamming distance between "toned" and "roses" is 3.

image-20190213184508110

随堂练习:
求下列字符串的汉明距离:

  10111011001001  

  21438962233796 
 
  irie与 rise

汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。

应用:汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。

举例:

X=[[0,1,1],[1,1,2],[1,5,2]]
注:以下计算方式中,把2个向量之间的汉明距离定义为2个向量不同的分量所占的百分比。

经计算得:
d =   0.6667    1.0000    0.3333

8 杰卡德距离(Jaccard Distance)【了解】:

杰卡德相似系数(Jaccard similarity coefficient):两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示:

image-20190213184805616

杰卡德距离(Jaccard Distance):与杰卡德相似系数相反,用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度:

image-20190213184819510

举例:

X=[[1,1,0][1,-1,0],[-1,1,0]]
注:以下计算中,把杰卡德距离定义为不同的维度的个数占“非全零维度”的比例
经计算得:
d =   0.5000    0.5000    1.0000

9 马氏距离(Mahalanobis Distance)【了解】

下图有两个正态分布图,它们的均值分别为a和b,但方差不一样,则图中的A点离哪个总体更近?或者说A有更大的概率属于谁?显然,A离左边的更近,A属于左边总体的概率更大,尽管A与a的欧式距离远一些。这就是马氏距离的直观解释。

image-20190213183101699

马氏距离是基于样本分布的一种距离。

马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。它是一种有效的计算两个位置样本集的相似度的方法。

与欧式距离不同的是,它考虑到各种特性之间的联系,即独立于测量尺度。

**马氏距离定义:**设总体G为m维总体(考察m个指标),均值向量为μ=(μ1,μ2,… …,μm,)`,协方差阵为∑=(σij),

则样本X=(X1,X2,… …,Xm,)`与总体G的马氏距离定义为:

image-20190316193646073

马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为∑的随机变量的差异程度:如果协方差矩阵为单位矩阵,马氏距离就简化为欧式距离;如果协方差矩阵为对角矩阵,则其也可称为正规化的欧式距离。

马氏距离特性:

1.量纲无关,排除变量之间的相关性的干扰;

2.马氏距离的计算是建立在总体样本的基础上的,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;

3 .计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。

4.还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6),(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。

欧式距离&马氏距离:

举例:

已知有两个类G1和G2,比如G1是设备A生产的产品,G2是设备B生产的同类产品。设备A的产品质量高(如考察指标为耐磨度X),其平均耐磨度μ1=80,反映设备精度的方差σ2(1)=0.25;设备B的产品质量稍差,其平均耐磨损度μ2=75,反映设备精度的方差σ2(2)=4.

今有一产品G0,测的耐磨损度X0=78,试判断该产品是哪一台设备生产的?

直观地看,X0与μ1(设备A)的绝对距离近些,按距离最近的原则,是否应把该产品判断设备A生产的?

考虑一种相对于分散性的距离,记X0与G1,G2的相对距离为d1,d2,则:

image-20190316192358557

因为d2=1.5 < d1=4,按这种距离准则,应判断X0为设备B生产的。

设备B生产的产品质量较分散,出现X0为78的可能性较大;而设备A生产的产品质量较集中,出现X0为78的可能性较小。

这种相对于分散性的距离判断就是马氏距离。

image-20190316192851778

未完待续, 同学们请等待下一期

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1370608.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

k8s源码阅读环境配置

源码阅读环境配置 k8s代码的阅读可以让我们更加深刻的理解k8s各组件的工作原理&#xff0c;同时提升我们Go编程能力。 IDE使用Goland&#xff0c;代码阅读环境需要进行如下配置&#xff1a; 从github上下载代码&#xff1a;https://github.com/kubernetes/kubernetes在GOPATH目…

YOLOv3算法较YOLOv1及YOLOv2的区别

yoloV3以V1&#xff0c;V2为基础进行的改进&#xff0c;主要有&#xff1a;利用多尺度特征进行目标检测&#xff1b;先验框更丰富&#xff1b;调整了网络结构&#xff1b;对象分类使用logistic代替了softmax,更适用于多标签分类任务。 3.1算法简介 YOLOv3是YOLO (You Only Lo…

Python基础语法(上)——基本语法、顺序语句、判断语句、循环语句(有C++基础快速掌握Python语言)

文章目录 0.python小技巧与易错点1.python 与 c 语法有哪些区别2.Python基本语法2.1python的变量类型2.2python中的运算符2.3python中的表达式2.4python中的输入输出 3.python判断语句3.1基本用法&#xff1a;3.2关于else if 的用法3.3关于pass语句3.4python变量的作用域3.5pyt…

2024年1月9日

2024年1月9日09:26:57待在工作室玩千恋万花和登录PTA练习习题 2024年1月9日09:28:02判断素数肯定会成为考试的关键点之一 2024年1月9日15:13:49完成java的复习 2024年1月9日15:16:41判断反馈类型 2024年1月9日15:20:29行列式求系数通过沙路法展开得到 2024年1月9日15:21:1…

【leetcode】力扣算法之删除链表中倒数第n个节点【中等难度】

删除链表中倒数第n个节点 给你一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 用例 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5] 输入&#xff1a;head [1], n 1 输出&#xff1a;[] 输入&#xff1a;head …

【OSG案例详细分析与讲解】之二:【着色文件转换为字符数组】

文章目录 一、【着色文件转换为字符数组】前言 二、【着色文件转换为字符数组】Shader转换 三、【着色文件转换为字符数组】转换函数 1.转换函数 2.字符替换函数 四、【着色文件转换为字符数组】示例 1.GLSL2Cpp.cpp文件&#xff1a; 2.Qt pro文件&#xff1a; 五、【着色文件转…

知识点整理[(GraphGeo) DATA AND PROBLEM DEFINITION]

3 DATA AND PROBLEM DEFINITION 3.1 Data Collection 问题一:IP定位数据集构成 回答: 包含数以百万计的IP地址,这些IP地址包括: (1)它们具有自己的知识(如自主系统(AS)和WHOIS数据); (2)网络测量

Python-抖音无法拒绝的表白代码【附源码】

一个无法被拒绝的表白代码 运行效果&#xff1a; 一&#xff1a;主程序&#xff1a; import sys import cfg import random import pygame from tkinter import Tk, messagebox Function:按钮类 Initial Args:--x, y: 按钮左上角坐标--width, height: 按钮宽高--text: 按钮显…

Vant2组件库van-list+Toast下拉加载滚动条回顶问题

目录 List 列表 Toast 轻提示 解决方案 1、不使用 Toast 的 加载提示 2、修改调整 pointer-event 属性值 3、判断是否为第一次加载再使用 背景 &#xff1a; 移动端项目 开发时&#xff0c;有数据长列表展示的场景需求&#xff0c;此时就用到了 Vant2 组件库里面的 <v…

【信息安全】深度分析邮件安全及钓鱼攻击防范

本博文共计3100余字&#xff0c;预计需阅读20分钟 【邮件安全建设】 一、前言 邮件系统作为企业办公网络架构中重要的组成部分&#xff0c;同时也是业务高频使用的办公应用&#xff0c;一旦出现安全问题&#xff0c;业务将会被严重干扰甚至中断&#xff0c;本篇博客通过攻守两…

react中实现拓扑图

react中实现拓扑图关系图 需求echarts代码react代码 需求 项目中的原型图需要使用react实现一个拓扑图&#xff08;关系图&#xff09; 通过查找&#xff0c;找到了可以使用的类似的原型&#xff1a;以下图片地址。 通过项目需要以及修改&#xff0c;形成了下边的样式 echar…

Java--业务场景:获取请求的ip属地信息

文章目录 前言步骤在pom文件中引入下列依赖IpUtil工具类在Controller层编写接口&#xff0c;获取请求的IP属地测试接口 IpInfo类中的方法 前言 很多时候&#xff0c;项目里需要展示用户的IP属地信息&#xff0c;所以这篇文章就记录一下如何在Java Spring boot项目里获取请求的…

Java--业务场景:在Spring项目启动时加载Java枚举类到Redis中(补充)

文章目录 前言步骤测试结果 前言 通过Java–业务场景&#xff1a;在Spring项目启动时加载Java枚举类到Redis中,我们成功将Java项目里的枚举类加载到Redis中了&#xff0c;接下来我们只需要写接口获取需要的枚举值数据就可以了&#xff0c;下面一起来编写这个接口吧。 步骤 在…

[算法与数据结构][c++][python]:C++与Python中的赋值、浅拷贝与深拷贝

C与Python中的赋值、浅拷贝与深拷贝 写在前面&#xff1a;Python和C中的赋值与深浅拷贝&#xff0c;由于其各自语言特性的问题&#xff0c;在概念和实现上稍微有点差异&#xff0c;本文将这C和Python中的拷贝与赋值放到一起&#xff0c;希望通过对比学习两语言实现上的异同点&a…

超市商品管理系统设计 C++实现

超市商品管理系统设计—C实现 文章目录 超市商品管理系统设计---C实现一、内容要求大纲图 二、源代码&#xff08;包含大量注释&#xff09;1、main.cpp文件2、supermarket.h文件3、supermarket.cpp文件4、administrator.h文件5、administrator.cpp文件6、user.h文件7、user.cp…

系列十二、数组

一、数组 1.1、概述 数组是指可以同时存放固定长度的同一类型的数据。 1.2、数组的声明 数组的声明有三种方式&#xff0c;具体如下&#xff1a; 1.2.1、方式一 /*** 声明数组的第一种方式* cityArray&#xff1a;数组名&#xff0c;注意:不包括[]*/ Test public void d…

MySQL的导入导出及备份

一.准备导入之前 二.navicat导入导出 ​编辑 三.MySQLdump命令导入导出 四.load data file命令的导入导出 五.远程备份 六. 思维导图 一.准备导入之前 需要注意&#xff1a; 在导出和导入之前&#xff0c;确保你有足够的权限。在进行导入操作之前&#xff0c;确保目标数据…

C2-3.3.2 机器学习/深度学习——数据增强

C2-3.3.2 数据增强 参考链接 1、为什么要使用数据增强&#xff1f; ※总结最经典的一句话&#xff1a;希望模型学习的更稳健 当数据量不足时候&#xff1a; 人工智能三要素之一为数据&#xff0c;但获取大量数据成本高&#xff0c;但数据又是提高模型精度和泛化效果的重要因…

代码随想录-刷题第五十二天

300. 最长递增子序列 题目链接&#xff1a;300. 最长递增子序列 思路&#xff1a;动态规划五步曲&#xff1a; dp[i]表示从0到i&#xff0c;以nums[i]结尾的最长递增子序列的长度。 递推公式&#xff1a;if(nums[i]>nums[j]) dp[i] max(dp[i], dp[j] 1) 位置i的最长升序…

Spring cloud聚合父工程project

文章目录 本次微服务版本一. 新建父工程project1.1设置字符集utf-81.2注解生效激活1.3. Java8编译版本 二. 父工程 pom.xml 本次微服务版本 一. 新建父工程project 1.1设置字符集utf-8 1.2注解生效激活 1.3. Java8编译版本 二. 父工程 pom.xml <?xml version"1.0&quo…