Java中的装箱和拆箱

news2024/9/20 22:35:32

自动装箱和拆箱问题是Java中一个老生常谈的问题了,今天我们就来一些看一下装箱和拆箱中的若干问题。本文先讲述装箱和拆箱最基本的东西,再来看一下面试笔试中经常遇到的与装箱、拆箱相关的问题。

一.什么是装箱?什么是拆箱?

我们知道 Java为每种基本数据类型都提供了对应的包装器类型,至于为什么会为每种基本数据类型提供包装器类型在此不进行阐述,有兴趣的朋友可以查阅相关资料。在Java SE5之前,如果要生成一个数值为10的Integer对象,必须这样进行:

1

Integer i = new Integer(10);

而在从Java SE5开始就提供了自动装箱的特性,如果要生成一个数值为10的Integer对象,只需要这样就可以了:

1

Integer i = 10;

这个过程中会自动根据数值创建对应的 Integer对象,这就是装箱。

那什么是拆箱呢?顾名思义,跟装箱对应,就是自动将包装器类型转换为基本数据类型:

1

2

Integer i = 10//装箱

int n = i;   //拆箱

简单一点说,装箱就是  自动将基本数据类型转换为包装器类型;拆箱就是  自动将包装器类型转换为基本数据类型。

下表是基本数据类型对应的包装器类型:

int(4字节)Integer
byte(1字节)Byte
short(2字节)Short
long(8字节)Long
float(4字节)Float
double(8字节)Double
char(2字节)Character
boolean(未定)Boolean

二.装箱和拆箱是如何实现的

上一小节了解装箱的基本概念之后,这一小节来了解一下装箱和拆箱是如何实现的。

我们就以Interger类为例,下面看一段代码:

1

2

3

4

5

6

7

public class Main {

    public static void main(String[] args) {

        Integer i = 10;

        int n = i;

    }

}

反编译class文件之后得到如下内容:

从反编译得到的字节码内容可以看出,在装箱的时候自动调用的是Integer的valueOf(int)方法。而在拆箱的时候自动调用的是Integer的intValue方法。

其他的也类似,比如Double、Character,不相信的朋友可以自己手动尝试一下。

因此可以用一句话总结装箱和拆箱的实现过程:

装箱过程是通过调用包装器的valueOf方法实现的,而拆箱过程是通过调用包装器的 xxxValue方法实现的。(xxx代表对应的基本数据类型)。

三.面试中相关的问题

虽然大多数人对装箱和拆箱的概念都清楚,但是在面试和笔试中遇到了与装箱和拆箱的问题却不一定会答得上来。下面列举一些常见的与装箱/拆箱有关的面试题。

1.下面这段代码的输出结果是什么?

1

2

3

4

5

6

7

8

9

10

11

12

public class Main {

    public static void main(String[] args) {

        Integer i1 = 100;

        Integer i2 = 100;

        Integer i3 = 200;

        Integer i4 = 200;

        System.out.println(i1==i2);

        System.out.println(i3==i4);

    }

}

也许有些朋友会说都会输出false,或者也有朋友会说都会输出true。但是事实上输出结果是:

true
false

为什么会出现这样的结果?输出结果表明i1和i2指向的是同一个对象,而i3和i4指向的是不同的对象。此时只需一看源码便知究竟,下面这段代码是Integer的valueOf方法的具体实现:

1

2

3

4

5

6

public static Integer valueOf(int i) {

        if(i >= -128 && i <= IntegerCache.high)

            return IntegerCache.cache[i + 128];

        else

            return new Integer(i);

    }

而其中IntegerCache类的实现为:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

private static class IntegerCache {

        static final int high;

        static final Integer cache[];

        static {

            final int low = -128;

            // high value may be configured by property

            int h = 127;

            if (integerCacheHighPropValue != null) {

                // Use Long.decode here to avoid invoking methods that

                // require Integer's autoboxing cache to be initialized

                int i = Long.decode(integerCacheHighPropValue).intValue();

                i = Math.max(i, 127);

                // Maximum array size is Integer.MAX_VALUE

                h = Math.min(i, Integer.MAX_VALUE - -low);

            }

            high = h;

            cache = new Integer[(high - low) + 1];

            int j = low;

            for(int k = 0; k < cache.length; k++)

                cache[k] = new Integer(j++);

        }

        private IntegerCache() {}

    }

从这2段代码可以看出,在通过valueOf方法创建Integer对象的时候,如果数值在[-128,127]之间,便返回指向IntegerCache.cache中已经存在的对象的引用;否则创建一个新的Integer对象。

上面的代码中i1和i2的数值为100,因此会直接从cache中取已经存在的对象,所以i1和i2指向的是同一个对象,而i3和i4则是分别指向不同的对象。

2.下面这段代码的输出结果是什么?

1

2

3

4

5

6

7

8

9

10

11

12

public class Main {

    public static void main(String[] args) {

        Double i1 = 100.0;

        Double i2 = 100.0;

        Double i3 = 200.0;

        Double i4 = 200.0;

        System.out.println(i1==i2);

        System.out.println(i3==i4);

    }

}

也许有的朋友会认为跟上面一道题目的输出结果相同,但是事实上却不是。实际输出结果为:

false
false

至于具体为什么,读者可以去查看Double类的valueOf的实现。

在这里只解释一下为什么Double类的valueOf方法会采用与Integer类的valueOf方法不同的实现。很简单:在某个范围内的整型数值的个数是有限的,而浮点数却不是

注意,Integer、Short、Byte、Character、Long这几个类的valueOf方法的实现是类似的。

Double、Float的valueOf方法的实现是类似的。

3.下面这段代码输出结果是什么:

1

2

3

4

5

6

7

8

9

10

11

12

public class Main {

    public static void main(String[] args) {

        Boolean i1 = false;

        Boolean i2 = false;

        Boolean i3 = true;

        Boolean i4 = true;

        System.out.println(i1==i2);

        System.out.println(i3==i4);

    }

}

输出结果是:

true
true

至于为什么是这个结果,同样地,看了Boolean类的源码也会一目了然。下面是Boolean的valueOf方法的具体实现:

1

2

3

public static Boolean valueOf(boolean b) {

        return (b ? TRUE : FALSE);

    }

而其中的 TRUE 和FALSE又是什么呢?在Boolean中定义了2个静态成员属性:

1

2

3

4

5

6

7

public static final Boolean TRUE = new Boolean(true);

    /**

     * The <code>Boolean</code> object corresponding to the primitive

     * value <code>false</code>.

     */

    public static final Boolean FALSE = new Boolean(false);

至此,大家应该明白了为何上面输出的结果都是true了。

4.谈谈Integer i = new Integer(xxx)和Integer i =xxx;这两种方式的区别。

当然,这个题目属于比较宽泛类型的。但是要点一定要答上,我总结一下主要有以下这两点区别:

1)第一种方式不会触发自动装箱的过程;而第二种方式会触发;

2)在执行效率和资源占用上的区别。第二种方式的执行效率和资源占用在一般性情况下要优于第一种情况(注意这并不是绝对的)。

5.下面程序的输出结果是什么?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

public class Main {

    public static void main(String[] args) {

        Integer a = 1;

        Integer b = 2;

        Integer c = 3;

        Integer d = 3;

        Integer e = 321;

        Integer f = 321;

        Long g = 3L;

        Long h = 2L;

        System.out.println(c==d);

        System.out.println(e==f);

        System.out.println(c==(a+b));

        System.out.println(c.equals(a+b));

        System.out.println(g==(a+b));

        System.out.println(g.equals(a+b));

        System.out.println(g.equals(a+h));

    }

}

先别看输出结果,读者自己想一下这段代码的输出结果是什么。这里面需要注意的是:当 “==”运算符的两个操作数都是 包装器类型的引用,则是比较指向的是否是同一个对象,而如果其中有一个操作数是表达式(即包含算术运算)则比较的是数值(即会触发自动拆箱的过程)。另外,对于包装器类型,equals方法并不会进行类型转换。明白了这2点之后,上面的输出结果便一目了然:

true
false
true
true
true
false
true

第一个和第二个输出结果没有什么疑问。第三句由于  a+b包含了算术运算,因此会触发自动拆箱过程(会调用intValue方法),因此它们比较的是数值是否相等。而对于c.equals(a+b)会先触发自动拆箱过程,再触发自动装箱过程,也就是说a+b,会先各自调用intValue方法,得到了加法运算后的数值之后,便调用Integer.valueOf方法,再进行equals比较。同理对于后面的也是这样,不过要注意倒数第二个和最后一个输出的结果(如果数值是int类型的,装箱过程调用的是Integer.valueOf;如果是long类型的,装箱调用的Long.valueOf方法)。

如果对上面的具体执行过程有疑问,可以尝试获取反编译的字节码内容进行查看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1369953.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python画国旗

前言 今天&#xff0c;我们来用turtle库来绘制国旗 一、美国国旗 国旗的形状是长方形;国旗的长宽之比为19:10&#xff0c;美国国旗由红、白、蓝三色组成;画面格局由两部分组成&#xff0c;旗的左上方蓝底上排列着50颗白色的星&#xff0c;6颗一排与5颗一排相间排列&#xff…

使用Process Explorer和Dependency Walker排查程序启动时缺少ucrtbase.dll等运行时库以及报0xC000007B错误

目录 1、问题描述 2、分析软件问题的常用分析工具 3、使用Dependency Walker排查启动程序时报找不到ucrtbase.dll、vcruntime140.dll等运行时库的问题 3.1、使用Dependency Walker查看exe程序的库依赖关系&#xff0c;排查找不到ucrtbase.dll、vcruntime140.dll库问题 3.2…

指针的含义、表示、规范、存储、运用

指针的含义、表示、规范、存储、运用 指针的含义指针的表示指针的规范先声明再定义声明和定义一起表示错误表示 指针的存储理解一个变量的存储过程和原理理解一个指针的存储过程和原理理解多个指针的存储过程和原理 指针的运用 指针的含义 表示某个变量或数据所在的内存地址 注…

大模型笔记 【1】 大模型初探

以下是Andrej Karpathy一小时讲解chatgpt的笔记。 Andrej Karpathy做自动驾驶的人应该比较熟悉&#xff0c;他是李飞飞的学生。在openAI做了一年半的科学家之后&#xff0c;去了特斯拉。在Tesla AI day讲解tesla自动驾驶方案的就是他。 这里我的主要收获是两个 大模型是一个有…

12V 全桥驱动芯片GC9008——可替代TMI8118,应用于摄像机、消费类产品上

GC9008 是一款 12V 全桥驱动芯片&#xff0c;为提供高性价比的方案。它能提供 0.1A 的持续输出电流。可以工作在 4.5~15V 的电源电压上。 具有 PWM&#xff08;IN1/IN2&#xff09;输入接口,与行业标准器件兼容.是 SOP8封装&#xff0c;GC9008D是DIP封装芯片特点 ● H 桥电机驱…

关于burpsuite对app(移动端)进行抓包的配置

可以使用手机模拟器&#xff0c;我这里以自己手机&#xff08;物理机&#xff09;演示配置过程 如果是使用的模拟器那么肯定和电脑是在同一局域网 如果使用物理机&#xff0c;那么可以通过连接同一WiFi确保在同一局域网环境下 查看电脑内网ip&#xff1a;192.168.1.105 &am…

2023 年精选:ChatGPT 会取代开发者吗?

由于最近发布了ChatGPT&#xff0c;人工智能再次热闹起来&#xff0c;ChatGPT 是一种自然语言聊天机器人&#xff0c;人们用它来写电子邮件、诗歌、歌词和大学论文。早期采用者甚至用它来编写Python 代码&#xff0c;以及对 shellcode 进行逆向工程并用 C 重写。ChatGPT 给那些…

Docker实战09|使用AUFS包装busybox

前几篇文章中&#xff0c;重点讲解了如何实现构建容器&#xff0c;需要回顾的小伙伴可以看以下文章&#xff1a; 《Docker实战06&#xff5c;深入剖析Docker Run命令》《Docker实战07&#xff5c;Docker增加容器资源限制》《Docker实战08&#xff5c;Docker管道及环境变量识别…

1879_什么是丝印

Grey 全部学习内容汇总&#xff1a; GitHub - GreyZhang/g_hardware_basic: You should learn some hardware design knowledge in case hardware engineer would ask you to prove your software is right when their hardware design is wrong! 1873_什么是丝印 丝印这个词…

Android平板浏览器远程Ubuntu服务器使用code-server编程写代码

文章目录 1.ubuntu本地安装code-server2. 安装cpolar内网穿透3. 创建隧道映射本地端口4. 安卓平板测试访问5.固定域名公网地址6.结语 1.ubuntu本地安装code-server 准备一台虚拟机,Ubuntu或者centos都可以&#xff0c;这里以VMwhere ubuntu系统为例 下载code server服务,浏览器…

我在工作一年时怎么都看不懂的编程写法。今天手把手教给你

作为一名程序员&#xff0c;你一定遇到或亲自写过这样的代码。有人将它形象的形容为shi山&#xff0c;或者被戏称为“面向保就业编程”。 以下面这个代码为例&#xff0c;其中的问题也显而易见&#xff0c;当越来越多的条件判断时&#xff0c;代码会变得非常臃肿&#xff0c;难…

记录汇川:H5U与Fctory IO测试5

主程序&#xff1a; 子程序&#xff1a; IO映射 子程序&#xff1a; 自动程序 Fctory IO配置&#xff1a; 触摸屏如下&#xff1a; 实际动作如下&#xff1a; Fctory IO测试5

mybatis plus相同Id与xml配置错误时,mybatis plus解决逻辑

前言 处理做项目的问题&#xff0c;其中不乏奇奇怪怪的问题&#xff0c;其中mybatis plus的问题感觉有点隐蔽&#xff0c;有些是运行时出现&#xff0c;有些是运行到具体的逻辑触发&#xff0c;对于应用的状态监控提出了极大的挑战&#xff0c;应用的状态由健康检查接口提供&a…

VMware复制粘贴共享文件夹

win和虚拟机之间&#xff0c;无法复制粘贴&#xff0c;共享文件夹的解决方案。 安装VMware tools 1&#xff0c;先检查虚拟机设置部分。共享文件夹已启用。复制粘贴已启用。 2&#xff0c;安装tools.选择重新安装VMware tools. (此图片为安装过的截图) 成功后会显示如图。…

【Python书籍】字节大佬爆肝整理的Python背记手册最佳入门书籍,刷爆这本书你的Python就牛了!

前言&#xff1a; 现今有很多人都想学习Python&#xff0c;但是不乏有一些英语不好和非计算机专业的小伙伴&#xff0c;在最基础入门阶段会跟不上被甩在身后&#xff0c;就是在知识点的理解方面有所缺失&#xff0c;对于计算机的运算&#xff0c;计算机语言&#xff0c;计算机…

家政服务系统有哪些优势及特点

&#x1f308;家政系统小程序&#xff0c;有哪些功能优势&#xff01; 1、平台依托&#xff1a;&#x1f30d;小程序极速开发。 2、人员保障&#xff1a;顾客轻松注册&#xff0c;家政服务人员也有独立账号。 3、地域无忧&#xff1a;后台自定义开放城市范围。&#x1f31f; 4、…

MySQL决战:MySQL数据导入导出

目录 前言 一.navact数据导入导出&#xff08;第三方工具&#xff09; 1.导入数据 2.数据导出 二. mysqldump命令导入导出数据 1.mysqldump介绍 2.数据导出 3.数据导入 三.load data file进行数据导入导出&#xff08;只限于单表&#xff09; 1.数据导出 增加导出权…

SpringCloud系列篇:核心组件之网关组件

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于SpringCloud的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.网关组件是什么 二. 网关组件的…

C++学习笔记——string类和new函数

目录 string类 1.功能增强 1.1 子字符串提取 1.2 字符串拼接 1.3 大小写转换 1.4 字符串比较 2.性能优化 3.使用示例 下面是一个简单的使用示例&#xff0c;展示了如何使用改进后的String类&#xff1a; NEW函数 2.1NEW函数的基本用法 2.2NEW函数的注意事项 2.3避…

大数据毕业设计:图书推荐系统+可视化+Django框架 图书管理系统 (附源码+论文)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…