Android AAudio

news2024/11/24 10:33:44

文章目录

      • 基本概念
      • 启用流程
      • 基本流程
      • HAL层对接
      • 数据流
      • 计时模型
      • 调试

基本概念

AAudio 是 Android 8.0 版本中引入的一种音频 API。

AAudio 提供了一个低延迟数据路径。在 EXCLUSIVE 模式下,使用该功能可将客户端应用代码直接写入与 ALSA 驱动程序共享的内存映射缓冲区。在 SHARED 模式下,MMAP 缓冲区由 AudioServer 中运行的混音器使用。在 EXCLUSIVE 模式下,由于数据会绕过混音器,延迟时间会明显缩短。
在 EXCLUSIVE 模式下,服务可从 HAL 请求 MMAP 缓冲区并管理资源。MMAP 缓冲区将在 NOIRQ 模式下运行,因此没有共享的读/写计数器来管理缓冲区的访问权限。相反,客户端会维护硬件的计时模型,并预测将在何时读取缓冲区。

  • 模式
    • exclusive: 独立一条通路,不跟其他音频流共享。延时最短的路径。
    • shared:多个音频流共享一条路径,在AAudioService 进行混音操作。延时会相对高一点。

启用流程

  • 创建AAudioService 服务

    服务的实现在framework/av/media/auioserver/main_audioserver.cpp。

    /**
     * Read system property.
     * @return AAUDIO_UNSPECIFIED, AAUDIO_POLICY_NEVER or AAUDIO_POLICY_AUTO or AAUDIO_POLICY_ALWAYS
     */
    int32_t AAudioProperty_getMMapPolicy();
    #define AAUDIO_PROP_MMAP_POLICY           "aaudio.mmap_policy"
    
    /**
     * Read system property.
     * @return AAUDIO_UNSPECIFIED, AAUDIO_POLICY_NEVER or AAUDIO_POLICY_AUTO or AAUDIO_POLICY_ALWAYS
     */
    int32_t AAudioProperty_getMMapExclusivePolicy();
    #define AAUDIO_PROP_MMAP_EXCLUSIVE_POLICY "aaudio.mmap_exclusive_policy"
    // AAudioService should only be used in OC-MR1 and later.
    // And only enable the AAudioService if the system MMAP policy explicitly allows it.
    // This prevents a client from misusing AAudioService when it is not supported.
    aaudio_policy_t mmapPolicy = property_get_int32(AAUDIO_PROP_MMAP_POLICY, AAUDIO_POLICY_NEVER);
    if (mmapPolicy == AAUDIO_POLICY_AUTO || mmapPolicy == AAUDIO_POLICY_ALWAYS) {
    	AAudioService::instantiate();
    }
    

根据设置的属性来instantiate AAudioService,需要设置如下属性

#define AAUDIO_PROP_MMAP_POLICY  "aaudio.mmap_policy"
setprop aaudio.mmap_policy 2或3(为auto或者always, 一般为2)

这一步的目的是启动AAudioService服务并会首先尝试MMap模式,失败的话重新走legacy 通过AudioTrack来写数据到audioFlinger中,可通过这个服务和hal层进行交互。

  • 配置文件修改

添加mmap_no_irq_out的mixport,并将这个流的端点路由到speaker的device。这一步会在device中打开一个mmap_no_irp的流端口,数据写入到这个流端口 会写入hal中申请的mmapbuffer中。

<mixPort name="mmap_no_irq_out" role="source" flags="AUDIO_OUTPUT_FLAG_DIRECT AUDIO_OUTPUT_FLAG_MMAP_NOIRQ">
	<profile name="" format="AUDIO_FORMAT_PCM_16_BIT"
		samplingRates="44100 48000" channelMasks="AUDIO_CHANNEL_OUT_STEREO"/>
</mixPort>
    
<mixPort name="mmap_no_irq_in" role="sink" flags="AUDIO_INPUT_FLAG_MMAP_NOIRQ">
   <profile name="" format="AUDIO_FORMAT_PCM_16_BIT"
         samplingRates="8000 11025 12000 16000 22050 24000 32000 44100 48000"
          channelMasks="AUDIO_CHANNEL_IN_MONO AUDIO_CHANNEL_IN_STEREO"/>
</mixPort>

<route type="mix" sink="Speaker"
sources="primary output,mmap_no_irq_out"/>
<route type="mix" sink="Wired Headset"
sources="primary output,mmap_no_irq_out"/>
<route type="mix" sink="Wired Headphones"
sources="primary output,mmap_no_irq_out"/>
  • hal添加支持
    需要实现以下的接口
start() generates (Result retval);
stop() generates (Result retval) ;
createMmapBuffer(int32_t minSizeFrames)  generates (Result retval, MmapBufferInfo info);
getMmapPosition()  generates (Result retval, MmapPosition position);

基本流程

在这里插入图片描述

  • 应用端调用的流程

    以原生的write_sine为例,会生成sine的波形数据并通过AAudio写入到声卡。frameworks\av\media\libaaudio\examples\write_sine\src\write_sine.cpp

  1. AAudio_createStreamBuilder创建stream的builder
  2. AAudioStreamBuilder_setBufferCapacityInFrames等等配置格式 采样率等等参数
  3. AAudioStreamBuilder_openStream open 获取流stream
  4. AAudioStream_requestStart 启动stream
  5. AAudioStream_write向之前打开的流中写数据
  6. AAudioStream_requestStop写完成关闭
AAudioStreamBuilder *builder = nullptr;
result = AAudio_createStreamBuilder(&builder);
AAudioStreamBuilder_setChannelCount(builder, mChannelCount);
if (dataCallback != nullptr) {
    AAudioStreamBuilder_setDataCallback(builder, dataCallback, userContext);
}

// Open an AAudioStream using the Builder.
result = AAudioStreamBuilder_openStream(builder, &mStream);
aaudio_result_t result = AAudioStream_requestStart(mStream);
myData.sampleRate = actualSampleRate;
myData.setupSineSweeps();
myData.sineOscillators[i].render(&floatData[i], actualChannelCount,
                                 framesPerWrite);
actual = AAudioStream_write(aaudioStream, floatData, minFrames, timeoutNanos);
aaudio_result_t result = AAudioStream_requestStop(mStream)
  • 内部流程

    • 服务端通过hal创建共享内存

      AAudioBinderClient通过service open, open后获取stream、 open调用到audioFlinger的openStream。
      audioflinger中根据配置的信息 获取open的handle,然后使用返回的流调用createMmapBuffer。
      这个buffer 是调用到hal层 通过alsa或者tinyalsa 来创建buffer。buffer创建成功后返回给AAudio。

    std::shared_ptr<AAudioServiceInterface> service = getAAudioService();
    if (service.get() == nullptr) return AAUDIO_ERROR_NO_SERVICE;
    stream = service->openStream(request, configuration);
    status = mMmapStream->createMmapBuffer(minSizeFrames, &mMmapBufferinfo);
    
    • 共享内存传递到客户端

      这块由hal创建的buffer 通过shared_memory_fd封装在mAudioDataFileDescriptor里面
      这个fd如何传递到客户端,通过封装在AudioEndpointParcelable进行传递。

    • 客户端获取共享内存
      service的getStreamDescription接口 来获取共享内存的fd。 这个流程也是在open之后就立马进行的,clinet取到这个parcelable信息后,重新读出来并初始化在FifoBufferIndirect中。

      open流程总结: mmap模式 clinet会通过AAudioService申请内存,AAudioService 调用到hal,由hal创建一块共享的内存 并将fd返回给client, clinet端使用系统调用mmap从fd中map出一段内存进行数据的读写等操作。

      aaudio_result_t SharedMemoryParcelable::resolveSharedMemory(const unique_fd& fd) {
          mResolvedAddress = (uint8_t *) mmap(0, mSizeInBytes, PROT_READ | PROT_WRITE,
                                              MAP_SHARED, fd.get(), 0);
          ALOGE("mmap() for fd = %d, address:%p, nBytes = %" PRId64 ", errno = %s",
                    fd.get(), mResolvedAddress, mSizeInBytes, strerror(errno));
          if (mResolvedAddress == MMAP_UNRESOLVED_ADDRESS) {
              ALOGE("mmap() failed for fd = %d, nBytes = %" PRId64 ", errno = %s",
                    fd.get(), mSizeInBytes, strerror(errno));
              return AAUDIO_ERROR_INTERNAL;
          }
          return AAUDIO_OK;
      }
      
    • start流程
      会通过aaudioService 一路调用到hal 的start

    • write流程

      write会调用到AudioStreamInternalPlay::write 其中buffer 外部要写入进行播放的数据。
      也就是从之前FifoBufferIndirect中获取一块内存设置为AAduioFlowGraph的输出,要写入的数据设置为
      AAduioFlowGraph的输入, 通过AAduioFlowGraph的process,输入数据可能有格式转换等等的操作。然后写入到hal的内存中。如何是exclusive的模式,应用端的数据直接写到hal申请的内存中。hal在送入硬件进行播放。

HAL层对接

  • 基础知识

    • buffer size period size概念的理解

          const struct pcm_config config = {
              .channels = 2,
              .rate = 48000,
              .format = PCM_FORMAT_S32_LE,
              .period_size = 1024,
              .period_count = 2,
              .start_threshold = 1024,
              .silence_threshold = 1024 * 2,
              .stop_threshold = 1024 * 2
      
      

      pcm_config中的内容,包括声道数、采样数、数据格式等内容。

      period_size表示的内核中DMA块的大小。

      period_count表示这样的块有几个。period_count的大小应该大于2,这样才能保证音频播放过程中无卡顿。

      start_threshold用来表示有多少帧数据的时候,才开始播放声音。

      silence_threshold和stop_threshold表示静音和停止播放时候需要的帧数,帧数太少的时候进行操作,可能导致破音的产生。

      buffer size 为period_count * period_count, 表示硬件中的缓存的buffer 的大小。

      buffer size/sample rate: 硬件缓冲全部播放完成需要的时间,也是hal写完数据后,等硬件播放完成需要的理论时间。

    • alsa驱动中的ringbuffer的管理

      驱动ringbuffer 中 硬件读的位置, 间隔的是可写的空间, 然后是应用写buffer的位置。

      一个往驱动ringbuffer 写数据的流程:

      在这里插入图片描述

      首先上面设置了buffer size。 为period size * period count。 底下的ringbuffer是由很多个
      buffer size大小的HW buffer 组成的。

      avail的size 是hw_prt + buffer size - appl_ptr,理解为起始地址为硬件读取的指针的在一个buffer size的空间内减去当前应用已经写的数据。

  • hal层封装内存的数据结构(基于tinyalsa)

    struct audio_mmap_buffer_info {
        void* shared_memory_address; /**< base address of mmap memory buffer.
        For use by local process only */
        int32_t shared_memory_fd; /**< FD for mmap memory buffer */
        int32_t buffer_size_frames; /**< total buffer size in frames */
        int32_t burst_size_frames; /**< transfer size granularity in frames */
        audio_mmap_buffer_flag flags; /**< Attributes describing the buffer. */
    };
    status = mMmapStream->createMmapBuffer(minSizeFrames, &mMmapBufferinfo);
    
    • 通过hal层的createMmapBuffer获取到的结构体

    • shared_memory_fd:打开声卡, 获取操作的指针,打开的时候需要设置low_latency的config。打开之后通过pcm_get_poll_fd获取fd。

    • shared_memory_address:通过pcm_mmap_begin 获取虚拟地址

    • bufffer_size_frames:是alsa中buffer的帧数,一般配置为period_count* period size。alsa buffer中能够存储几个中断周期内处理完成的帧数。 也是以帧为单位的。

    • burst_size_frames: 每次传输的帧数。一般配置为period size 为一个中断周期内处理的帧数大小 是以frame 为单位的。

  • hal获取硬件的更新位置和时间戳

    /**
     * Mmap buffer read/write position returned by audio_stream->get_mmap_position().
     * note\ Used by streams opened in mmap mode.
     */
    struct audio_mmap_position {
        int64_t  time_nanoseconds; /**< timestamp in ns, CLOCK_MONOTONIC */
        int32_t  position_frames;  /**< increasing 32 bit frame count reset when stream->stop()
                                        is called */
    };
    

    通过pcm_mmap_get_hw_ptr的函数获取当前 alsa的hw_ptr值也就是上面结构体中的position_frames,以及相对时间(以1970年为基准的时间戳对应time_nanoseconds)。
    这些时间和ptr位置的信息返回给AAudio 更新计时模型。

  • hal层流程的控制start、stop

    • out_start
      调用pcm_start将pcm进行start。如果没有start就调用pcm_mmap_get_hw_ptr
      EBADFD: 未start会出现 fd in bad status的错误。
      EPIPE( Broken pipe): 而fd被关闭的会出现bad FIFO的错误。

    • out_stop
      stop 并close 掉pcm的fd。

数据流

在这里插入图片描述

  • 首先从声卡mmap出来的这一段内存,对于播放,上层维护着一个writeIndex, 这个index 不受任何其他的影响。只要数据往buffer里面写了多少,那么这个index就会往前移动多少。
  • 而从hal层 get_mmap_position返回的时间 和 position。其中时间表示从1970为基准,播放了多少的时间,以及当前硬件从mmap buffer读取的指针的位置hw_ptr。上层依靠这个来更新硬件读的位置, 这个影响到 上层判断一次可以写入多少的数据。 但不会影响连续的往硬件buffer 上面写数据。
  • 在写的时候 需要获取一下当前的时间, 将当前时间减掉上一次get_mmap_position获取到的时间,转换为postion(实际就是距离上一次更新 硬件又已经播放了多少帧)将这个readCounter 更新到新的位置。
    然后根据这个新的位置和 已经写的位置 以及hw_buffer 来判断有多少空间可以写。如果这个position错的话, 偏大 可写的数据空间更多,变小可写数据空间少。

计时模型

  • 所谓的计时模型就是播放时间和位置一个转换关系。 根据hal层上报的播放时间 和 播放位置 会更新两者之间的对应关系。目的是为了 比较精确 合理的获取硬件读取的位置。 当要把数据写入到mmap
    的buffer 前 ,确认当前硬件读的位置并更新,然后根据读位置和写位置 获取可以写的buffer的大小。
    根据这个大小写入这么多的数据。

  • mmap 模式的时候。内核并不知道用户空间何时完成写入了, 因此用户空间完成写入时需要通过某种方式告知内核. alsa提供了ioctl SNDRV_PCM_IOCTL_SYNC_PTR, 供用户空间通知内核更新appl_ptr, 例如tinyalsa中的pcm_sync_ptr采用的就是这种方式对应的接口是pcm_mmap_get_hw_ptr. 在内核层, snd_pcm_common_ioctl1 -> snd_pcm_sync_ptr 会最终更新该参数。这个调用是在get_out_position的时候同步完成的。

  • 下面的函数会将上面获取mmap的postion mmap的position 更新到
    mFramesTransferred中。最后的累加值会返回出去到positionFrames 和 timeNanos 中。

// Get free-running DSP or DMA hardware position from the HAL.
aaudio_result_t AAudioServiceEndpointMMAP::getFreeRunningPosition(int64_t *positionFrames,
                                                                int64_t *timeNanos) {
    struct audio_mmap_position position;
    if (mMmapStream == nullptr) {
        return AAUDIO_ERROR_NULL;
    }
    status_t status = mMmapStream->getMmapPosition(&position);
    ALOGE("%s() status= %d, pos = %d, nanos = %lld\n",
          __func__, status, position.position_frames, (long long) position.time_nanoseconds);
    aaudio_result_t result = AAudioConvert_androidToAAudioResult(status);
    if (result == AAUDIO_ERROR_UNAVAILABLE) {
        ALOGW("%s(): getMmapPosition() has no position data available", __func__);
    } else if (result != AAUDIO_OK) {
        ALOGE("%s(): getMmapPosition() returned status %d", __func__, status);
    } else {
        // Convert 32-bit position to 64-bit position.
        mFramesTransferred.update32(position.position_frames);
        *positionFrames = mFramesTransferred.get();
        *timeNanos = position.time_nanoseconds;
    }
    return result;
}


在service 有一个线程是专门发送timestamp给client端
获取timestamp调度的周期开始的时候 是1ms。 而后是3ms, 10ms最后是50ms。同时也会加上一个0-1ms之间的随机数

void AAudioServiceStreamBase::run() {
    aaudio_result_t result = AAUDIO_OK;
    while(mThreadEnabled.load()) {
        loopCount++;
        if (AudioClock::getNanoseconds() >= nextTime) {
            result = sendCurrentTimestamp();
            if (result != AAUDIO_OK) {
                ALOGE("%s() timestamp thread got result = %d", __func__, result);
                break;
            }
            nextTime = timestampScheduler.nextAbsoluteTime();
        } else  {
            // Sleep until it is time to send the next timestamp.
            // TODO Wait for a signal with a timeout so that we can stop more quickly.
            AudioClock::sleepUntilNanoTime(nextTime);
        }
    }
    // This was moved from the calls in stop_l() and pause_l(), which could cause a deadlock
    // if it resulted in a call to disconnect.
    if (result == AAUDIO_OK) {
        (void) sendCurrentTimestamp();
    }
    ALOGD("%s() %s exiting after %d loops <<<<<<<<<<<<<< TIMESTAMPS",
          __func__, getTypeText(), loopCount);
}


发送消息到client端, 在外部write的时候 会先处理service端发送的消息。调用processTimestamp进行处理。

// Write the data, block if needed and timeoutMillis > 0
aaudio_result_t AudioStreamInternalPlay::write(const void *buffer, int32_t numFrames,
                                               int64_t timeoutNanoseconds) {
    return processData((void *)buffer, numFrames, timeoutNanoseconds);
}
aaudio_result_t result = processCommands();

aaudio_result_t AudioStreamInternal::onTimestampService(AAudioServiceMessage *message) {
#if LOG_TIMESTAMPS
    logTimestamp(*message);
#endif
    processTimestamp(message->timestamp.position,
            message->timestamp.timestamp + mTimeOffsetNanos);
    return AAUDIO_OK;
}

调试

tinyalsa 上面流程跑通, 但是没有声音。 查看声卡的状态是XRUN。但是有往mmap出来的地址上面写数据。怎么调试这个问题?

  • 确认fd是不是正确

    可以通过正常播放的时候, 打印一下这个fd的路径看看是不是对的。

  • 确认mmap是不是成功

    AAudio mmap的时候 是成功的, 如果失败上面会报错。

  • 数据是不是真正的写入

通过查看声卡的状态和信息来确认

cat /proc/asound/card2/pcm0p/sub0/status
state: RUNNING
owner_pid : 30897
trigger_time: 152475.615823722
tstamp : 152487.360496736
delay : 1696
avail : 224
avail_max : 480
hw_ptr : 563760
appl_ptr : 565680

运行的时候 hw_ptr 和 appl_ptr 是变化的

state: 当前输出运行状态
owner_pid:调用者的线程号
delay: 当前buffer中可用数据大小(单位为:帧)
avail:当前buffer中空闲空间大小(单位为:帧)[为pcmc录音时,该值为可用数据大小]
hw_ptr: alsa驱动读取指针位置 [为pcmc录音时,该值为 alsa驱动写入指针位置]
appl_ptr:alsa写入数据者的指针位置 [为pcmc录音时,该值为alsa读取数据者的指针位置]。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1369881.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot在线考试系统源码和论文

网络的广泛应用给生活带来了十分的便利。所以把在线考试管理与现在网络相结合&#xff0c;利用java技术建设在线考试系统&#xff0c;实现在线考试的信息化。则对于进一步提高在线考试管理发展&#xff0c;丰富在线考试管理经验能起到不少的促进作用。 在线考试系统能够通过互…

前端实现截图并下载

原理: 使用一个名为html2canvas的JavaScript库。这个库允许你将当前的HTML内容渲染到一个canvas元素上&#xff0c;然后将其转换为图像并进行下载。 你需要在项目中引入html2canvas库。你可以从官方网站&#xff08;https://html2canvas.hertzen.com/&#xff09;下载&#xf…

编译原理期末大题步骤——例题

一、预测分析方法步骤 提取左公因子&#xff0c;消除左递归判断文法是否为LL(1)文法若是&#xff0c;构造预测分析表&#xff1b;否则&#xff0c;不能进行分析。根据预测分析表对输入串进行分析 例子&#xff1a; 文法G[E]&#xff1a; …

selenium python 实现基本自动化测试的示例代码

安装selenium 打开命令控制符输入&#xff1a;pip install -U selenium 火狐浏览器安装firebug&#xff1a;www.firebug.com&#xff0c;调试所有网站语言&#xff0c;调试功能 Selenium IDE 是嵌入到Firefox 浏览器中的一个插件&#xff0c;实现简单的浏览器操 作的录制与回…

如何克隆驱动器,不同的操作系统有不同的推荐软件

你需要将Windows或macOS安装迁移到新驱动器吗?你可以使用服务备份文件,也可以创建数据的完整一对一副本。通过克隆你的驱动器,你可以创建一个精确的副本。 一些业务级别的备份服务,如IDrive和Acronis,具有内置的磁盘克隆功能,是对正常文件备份的补充。但对于一次性克隆(…

BitMap解析(一)

文章目录 前言数据结构添加与删除操作 JDK中BitSet源码解析重要成员属性初始化添加数据清除数据获取数据size和length方法集合操作&#xff1a;与、或、异或 前言 为什么称为bitmap&#xff1f; bitmap不仅仅存储介质以及数据结构不同于hashmap&#xff0c;存储的key和value也…

在python里面探索web框架

一、常识性知识 python Web框架三巨头&#xff1a;Flask&#xff08;简单易学&#xff09;、Django(复杂庞大)、FastAPI 1. Django&#xff1a;Django是一个高级的Web框架&#xff0c;它提供了强大的功能和工具&#xff0c;用于快速开发复杂的Web应用程序。 2. Flask&#xff…

海外社媒运营为什么需要选择优质IP代理?

跨境电商卖家尤其需要关注海外社媒运营&#xff0c;想要更好地运营Instagram、Facebook、TikTok 或 Twitter等&#xff0c;挖掘社媒潜力需要采取战略方法&#xff0c;而社交媒体IP代理在这一活动中发挥着至关重要的作用&#xff0c;下面为你详细介绍。 一、社交媒体代理IP及其运…

新年喝酒有讲究,怎么喝葡萄酒呢?

中国的新年有着独特又深远的意义&#xff0c;无论人在天涯海角&#xff0c;回家团圆是每个人的心愿。新年亲朋好友欢聚一堂&#xff0c;没有酒哪有气氛&#xff0c;所以喝酒是必不可少的活动项目。云仓酒庄的品牌雷盛红酒LEESON分享那么&#xff0c;新年喝啥酒&#xff0c;葡萄…

C# 一看就懂的装箱拆箱案例

文章目录 装箱&#xff08;Boxing&#xff09;拆箱&#xff08;Unboxing&#xff09;编程语言中的装箱与拆箱优缺点 在C#中&#xff0c;装箱&#xff08;Boxing&#xff09;和拆箱&#xff08;Unboxing&#xff09;是值类型与引用类型之间相互转换的过程。 装箱&#xff08;Box…

【Qt打包】Qt打包生成可安装exe文件

第三方打包 gitee 项目地址&#xff1a;https://gitee.com/hudejie/universal-software-installation-package 纯净包备份&#xff08;v0.1&#xff09;&#xff1a;https://download.csdn.net/download/weixin_45863921/88720027 1 项目介绍 作者项目介绍&#xff1a; 基于NS…

通用机V8R6集群部署_1主1备1见证_图形化_Centos7

KingbaseES 提供数据库部署工具进行数据库集群的部署。KingbaseES 提供基于图形化和命令行操作的集群部署方式&#xff0c;本文档主要用于指导不支持 GUI 的服务器上的 KingbaseES 集群部署工作。 集群简介 KingbaseES软件能够提供一主一备以及一主多备的高可用集群架构&…

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类

目录 1 变分模态分解VMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 故障VMD分解可视化 3 基于VMDCNN-Transformer的轴承故障诊断分类 3.1 定义VMD-CNN-Transformer分类网络模型 3.2 设置参数&#xff0c;训练模型 3.3 模型评估 代码、数据如下&#xff1a…

大图切片预览

文章目录 前言处理流程完整代码前端预览 前言 最近有需求&#xff0c;前端要预览百兆以上的大图&#xff0c;这直接访问应该就不太行了&#xff0c;系统打开都在加载好一会儿&#xff0c;刚好从事的又是 gis 行业&#xff0c;于是打算用类似加载地图的方式来切片加载大图。这里…

【HarmonyOS】掌握 Stage 模型的核心概念与应用

从今天开始&#xff0c;博主将开设一门新的专栏用来讲解市面上比较热门的技术 “鸿蒙开发”&#xff0c;对于刚接触这项技术的小伙伴在学习鸿蒙开发之前&#xff0c;有必要先了解一下鸿蒙&#xff0c;从你的角度来讲&#xff0c;你认为什么是鸿蒙呢&#xff1f;它出现的意义又是…

谷歌提出「边界注意力」模型,实现超越像素级检测精度!微弱边界也逃不过

有些情况下&#xff0c;当面临分辨率较低的图像时&#xff0c;可能会在进行诸如目标检测和图像分割等任务时遇到一些挑战和阻碍。这是因为低分辨率图像可能丢失了细节信息&#xff0c;使得计算机视觉系统难以准确捕捉和理解图像中的关键特征。在这种背景下&#xff0c;传统的方…

Poi实现根据word模板导出-图表篇

往期系列传送门&#xff1a; Poi实现根据word模板导出-文本段落篇 &#xff08;需要完整代码的直接看最后位置&#xff01;&#xff01;&#xff01;&#xff09; 前言&#xff1a; 补充Word中图表的知识&#xff1a; 每个图表在word中都有一个内置的Excel&#xff0c;用于…

kubernetes 容器监控 Sysdig Falco

开头语 写在前面&#xff1a;如有问题&#xff0c;以你为准&#xff0c; 目前24年应届生&#xff0c;各位大佬轻喷&#xff0c;部分资料与图片来自网络 内容较长&#xff0c;页面右上角目录方便跳转 Sysdig 监控容器系统调用 介绍 资料 Sysdig:一个非常强大的系统监控、分…

PostgreSQL的常见错误和解决方法

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 在学习新的东西时&#xff0c;会犯很多的错误&#xff0c;会遇到很多坑。我们在填坑与犯错中不断进步成长。 以下是在学习pgsql中…

【驱动序列】C#获取电脑硬件之CPU信息,以及它都有那些品牌

欢迎来到《小5讲堂》&#xff0c;大家好&#xff0c;我是全栈小5。 这是是《驱动序列》文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识…