本文总结归纳古月居胡春旭ros机械臂教程,给出了一些error的解决方法,补充了通过python运行moveit。十分建议去看github huchunxu源代码的repository。
创建机械臂的xacro模型
首先创建一个工作空间,在工作空间中创建arm_description功能包。功能包中创建一个urdf文件夹,放入机械臂模型文件arm.xacro
<?xml version="1.0"?>
<robot name="arm" xmlns:xacro="http://ros.org/wiki/xacro">
<!-- Defining the colors used in this robot -->
<material name="Black">
<color rgba="0 0 0 1"/>
</material>
<material name="White">
<color rgba="1 1 1 1"/>
</material>
<material name="Blue">
<color rgba="0 0 1 1"/>
</material>
<material name="Red">
<color rgba="1 0 0 1"/>
</material>
<!-- Constants -->
<xacro:property name="M_PI" value="3.14159"/>
<!-- link1 properties -->
<xacro:property name="link1_width" value="0.03" />
<xacro:property name="link1_len" value="0.10" />
<!-- link2 properties -->
<xacro:property name="link2_width" value="0.03" />
<xacro:property name="link2_len" value="0.14" />
<!-- link3 properties -->
<xacro:property name="link3_width" value="0.03" />
<xacro:property name="link3_len" value="0.22" />
<!-- link4 properties -->
<xacro:property name="link4_width" value="0.025" />
<xacro:property name="link4_len" value="0.06" />
<!-- link5 properties -->
<xacro:property name="link5_width" value="0.03" />
<xacro:property name="link5_len" value="0.06" />
<!-- link6 properties -->
<xacro:property name="link6_width" value="0.04" />
<xacro:property name="link6_len" value="0.02" />
<!-- Left gripper -->
<xacro:property name="left_gripper_len" value="0.08" />
<xacro:property name="left_gripper_width" value="0.01" />
<xacro:property name="left_gripper_height" value="0.01" />
<!-- Right gripper -->
<xacro:property name="right_gripper_len" value="0.08" />
<xacro:property name="right_gripper_width" value="0.01" />
<xacro:property name="right_gripper_height" value="0.01" />
<!-- Gripper frame -->
<xacro:property name="grasp_frame_radius" value="0.001" />
<!-- Inertial matrix -->
<xacro:macro name="inertial_matrix" params="mass">
<inertial>
<mass value="${mass}" />
<inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="0.5" iyz="0.0" izz="1.0" />
</inertial>
</xacro:macro>
<!-- /// bottom_joint // -->
<joint name="bottom_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0" />
<parent link="base_link"/>
<child link="bottom_link"/>
</joint>
<link name="bottom_link">
<visual>
<origin xyz=" 0 0 -0.02" rpy="0 0 0"/>
<geometry>
<box size="1 1 0.02" />
</geometry>
<material name="Brown" />
</visual>
<collision>
<origin xyz=" 0 0 -0.02" rpy="0 0 0"/>
<geometry>
<box size="1 1 0.02" />
</geometry>
</collision>
<xacro:inertial_matrix mass="500"/>
</link>
<!-- / BASE LINK // -->
<link name="base_link">
<visual>
<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>
<box size="0.1 0.1 0.04" />
</geometry>
<material name="White" />
</visual>
<collision>
<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>
<box size="0.1 0.1 0.04" />
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="joint1" type="revolute">
<parent link="base_link"/>
<child link="link1"/>
<origin xyz="0 0 0.02" rpy="0 ${M_PI/2} 0" />
<axis xyz="-1 0 0" />
<limit effort="300" velocity="1" lower="-2.96" upper="2.96"/>
<dynamics damping="50" friction="1"/>
</joint>
<!-- / LINK1 // -->
<link name="link1" >
<visual>
<origin xyz="-${link1_len/2} 0 0" rpy="0 ${M_PI/2} 0" />
<geometry>
<cylinder radius="${link1_width}" length="${link1_len}"/>
</geometry>
<material name="Blue" />
</visual>
<collision>
<origin xyz="-${link1_len/2} 0 0" rpy="0 ${M_PI/2} 0" />
<geometry>
<cylinder radius="${link1_width}" length="${link1_len}"/>
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="joint2" type="revolute">
<parent link="link1"/>
<child link="link2"/>
<origin xyz="-${link1_len} 0 0.0" rpy="-${M_PI/2} 0 ${M_PI/2}" />
<axis xyz="1 0 0" />
<limit effort="300" velocity="1" lower="-2.35" upper="2.35" />
<dynamics damping="50" friction="1"/>
</joint>
<!-- /// LINK2 // -->
<link name="link2" >
<visual>
<origin xyz="0 0 ${link2_len/2}" rpy="0 0 0" />
<geometry>
<cylinder radius="${link2_width}" length="${link2_len}"/>
</geometry>
<material name="White" />
</visual>
<collision>
<origin xyz="0 0 ${link2_len/2}" rpy="0 0 0" />
<geometry>
<cylinder radius="${link2_width}" length="${link2_len}"/>
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="joint3" type="revolute">
<parent link="link2"/>
<child link="link3"/>
<origin xyz="0 0 ${link2_len}" rpy="0 ${M_PI} 0" />
<axis xyz="-1 0 0" />
<limit effort="300" velocity="1" lower="-2.62" upper="2.62" />
<dynamics damping="50" friction="1"/>
</joint>
<!-- / LINK3 / -->
<link name="link3" >
<visual>
<origin xyz="0 0 -${link3_len/2}" rpy="0 0 0" />
<geometry>
<cylinder radius="${link3_width}" length="${link3_len}"/>
</geometry>
<material name="Blue" />
</visual>
<collision>
<origin xyz="0 0 -${link3_len/2}" rpy="0 0 0" />
<geometry>
<cylinder radius="${link3_width}" length="${link3_len}"/>
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="joint4" type="revolute">
<parent link="link3"/>
<child link="link4"/>
<origin xyz="0.0 0.0 -${link3_len}" rpy="0 ${M_PI/2} ${M_PI}" />
<axis xyz="1 0 0" />
<limit effort="300" velocity="1" lower="-2.62" upper="2.62" />
<dynamics damping="50" friction="1"/>
</joint>
<!-- /// LINK4 -->
<link name="link4" >
<visual>
<origin xyz="${link4_len/2} 0 0" rpy="0 ${M_PI/2} 0" />
<geometry>
<cylinder radius="${link4_width}" length="${link4_len}"/>
</geometry>
<material name="Black" />
</visual>
<collision>
<origin xyz="${link4_len/2} 0 0" rpy="0 ${M_PI/2} 0" />
<geometry>
<cylinder radius="${link4_width}" length="${link4_len}"/>
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="joint5" type="revolute">
<parent link="link4"/>
<child link="link5"/>
<origin xyz="${link4_len} 0.0 0.0" rpy="0 ${M_PI/2} 0" />
<axis xyz="1 0 0" />
<limit effort="300" velocity="1" lower="-2.62" upper="2.62" />
<dynamics damping="50" friction="1"/>
</joint>
<!-- // LINK5 / -->
<link name="link5">
<visual>
<origin xyz="0 0 ${link4_len/2}" rpy="0 0 0" />
<geometry>
<cylinder radius="${link5_width}" length="${link5_len}"/>
</geometry>
<material name="White" />
</visual>
<collision>
<origin xyz="0 0 ${link4_len/2} " rpy="0 0 0" />
<geometry>
<cylinder radius="${link5_width}" length="${link5_len}"/>
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="joint6" type="revolute">
<parent link="link5"/>
<child link="link6"/>
<origin xyz="0 0 ${link4_len}" rpy="${1.5*M_PI} -${M_PI/2} 0" />
<axis xyz="1 0 0" />
<limit effort="300" velocity="1" lower="-6.28" upper="6.28" />
<dynamics damping="50" friction="1"/>
</joint>
<!-- LINK6 / -->
<link name="link6">
<visual>
<origin xyz="${link6_len/2} 0 0 " rpy="0 ${M_PI/2} 0" />
<geometry>
<cylinder radius="${link6_width}" length="${link6_len}"/>
</geometry>
<material name="Blue" />
</visual>
<collision>
<origin xyz="${link6_len/2} 0 0" rpy="0 ${M_PI/2} 0" />
<geometry>
<cylinder radius="${link6_width}" length="${link6_len}"/>
</geometry>
</collision>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="finger_joint1" type="prismatic">
<parent link="link6"/>
<child link="gripper_finger_link1"/>
<origin xyz="0.0 0 0" />
<axis xyz="0 1 0" />
<limit effort="100" lower="0" upper="0.06" velocity="1.0"/>
<dynamics damping="50" friction="1"/>
</joint>
<!-- // gripper // -->
<!-- LEFT GRIPPER AFT LINK -->
<link name="gripper_finger_link1">
<visual>
<origin xyz="0.04 -0.03 0"/>
<geometry>
<box size="${left_gripper_len} ${left_gripper_width} ${left_gripper_height}" />
</geometry>
<material name="White" />
</visual>
<xacro:inertial_matrix mass="1"/>
</link>
<joint name="finger_joint2" type="fixed">
<parent link="link6"/>
<child link="gripper_finger_link2"/>
<origin xyz="0.0 0 0" />
</joint>
<!-- RIGHT GRIPPER AFT LINK -->
<link name="gripper_finger_link2">
<visual>
<origin xyz="0.04 0.03 0"/>
<geometry>
<box size="${right_gripper_len} ${right_gripper_width} ${right_gripper_height}" />
</geometry>
<material name="White" />
</visual>
<xacro:inertial_matrix mass="1"/>
</link>
<!-- Grasping frame -->
<link name="grasping_frame"/>
<joint name="grasping_frame_joint" type="fixed">
<parent link="link6"/>
<child link="grasping_frame"/>
<origin xyz="0.08 0 0" rpy="0 0 0"/>
</joint>
<!-- / Gazebo // -->
<gazebo reference="bottom_link">
<material>Gazebo/White</material>
</gazebo>
<gazebo reference="base_link">
<material>Gazebo/White</material>
</gazebo>
<gazebo reference="link1">
<material>Gazebo/Blue</material>
</gazebo>
<gazebo reference="link2">
<material>Gazebo/White</material>
</gazebo>
<gazebo reference="link3">
<material>Gazebo/Blue</material>
</gazebo>
<gazebo reference="link4">
<material>Gazebo/Black</material>
</gazebo>
<gazebo reference="link5">
<material>Gazebo/White</material>
</gazebo>
<gazebo reference="link6">
<material>Gazebo/Blue</material>
</gazebo>
<gazebo reference="gripper_finger_link1">
<material>Gazebo/White</material>
</gazebo>
<gazebo reference="gripper_finger_link2">
<material>Gazebo/White</material>
</gazebo>
<!-- Transmissions for ROS Control -->
<xacro:macro name="transmission_block" params="joint_name">
<transmission name="tran1">
<type>transmission_interface/SimpleTransmission</type>
<joint name="${joint_name}">
<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
</joint>
<actuator name="motor1">
<hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface>
<mechanicalReduction>1</mechanicalReduction>
</actuator>
</transmission>
</xacro:macro>
<xacro:transmission_block joint_name="joint1"/>
<xacro:transmission_block joint_name="joint2"/>
<xacro:transmission_block joint_name="joint3"/>
<xacro:transmission_block joint_name="joint4"/>
<xacro:transmission_block joint_name="joint5"/>
<xacro:transmission_block joint_name="joint6"/>
<xacro:transmission_block joint_name="finger_joint1"/>
<!-- ros_control plugin -->
<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
<robotNamespace>/arm</robotNamespace>
</plugin>
</gazebo>
</robot>
Transmission for ROS Control那一部分相当于是给关节绑定上电机,通过控制电机控制关节运动。
再创建一个launch文件夹,创建view_arm.launch文件
<launch>
<arg name="model" />
<!-- 加载机器人模型参数 -->
<param name="robot_description" command="$(find xacro)/xacro --inorder $(find arm_description)/urdf/arm.xacro" />
<!-- 设置GUI参数,显示关节控制插件 -->
<!-- <param name="use_gui" value="true"/> -->
<!-- 运行joint_state_publisher节点,发布机器人的关节状态 -->
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" />
<!-- 运行robot_state_publisher节点,发布tf -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
<!-- 运行rviz可视化界面 -->
<node name="rviz" pkg="rviz" type="rviz"/>
</launch>
运行这个launch文件,在rviz中选择fixed frame,再加载Robot Model,就可以看见机械臂了。
在Gazebo中手动控制机械臂
在工作空间中再创建一个arm_gazebo功能包,添加launch文件夹,创建arm_world.launch
<launch>
<!-- these are the arguments you can pass this launch file, for example paused:=true -->
<arg name="paused" default="false"/>
<arg name="use_sim_time" default="true"/>
<arg name="gui" default="true"/>
<arg name="headless" default="false"/>
<arg name="debug" default="false"/>
<!-- We resume the logic in empty_world.launch -->
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="debug" value="$(arg debug)" />
<arg name="gui" value="$(arg gui)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="use_sim_time" value="$(arg use_sim_time)"/>
<arg name="headless" value="$(arg headless)"/>
</include>
<!-- Load the URDF into the ROS Parameter Server -->
<param name="robot_description" command="$(find xacro)/xacro --inorder '$(find arm_description)/urdf/arm.xacro'" />
<!-- Run a python script to the send a service call to gazebo_ros to spawn a URDF robot -->
<node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
args="-urdf -model arm -param robot_description"/>
</launch>
功能是:创建一个环境,并且将机器人模型放进去。
下面要做的是加载控制器,首先要设定pid控制器的参数。在arm_gazebo功能包中创建config文件夹,创建arm_gazebo_control.yaml,给6个关节设定pid控制器参数。
arm:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50
# Position Controllers ---------------------------------------
joint1_position_controller:
type: position_controllers/JointPositionController
joint: joint1
pid: {p: 100.0, i: 0.01, d: 10.0}
joint2_position_controller:
type: position_controllers/JointPositionController
joint: joint2
pid: {p: 100.0, i: 0.01, d: 10.0}
joint3_position_controller:
type: position_controllers/JointPositionController
joint: joint3
pid: {p: 100.0, i: 0.01, d: 10.0}
joint4_position_controller:
type: position_controllers/JointPositionController
joint: joint4
pid: {p: 100.0, i: 0.01, d: 10.0}
joint5_position_controller:
type: position_controllers/JointPositionController
joint: joint5
pid: {p: 100.0, i: 0.01, d: 10.0}
joint6_position_controller:
type: position_controllers/JointPositionController
joint: joint6
pid: {p: 100.0, i: 0.01, d: 10.0}
在launch文件夹中创建arm_gazebo_controller.launch,实现的作用是加载刚才创建的pid参数yaml文件,创建控制器。
<launch>
<!-- 将关节控制器的配置参数加载到参数服务器中 -->
<rosparam file="$(find arm_gazebo)/config/arm_gazebo_control.yaml" command="load"/>
<!-- 加载controllers -->
<node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false"
output="screen" ns="/arm" args="joint_state_controller
joint1_position_controller
joint2_position_controller
joint3_position_controller
joint4_position_controller
joint5_position_controller
joint6_position_controller"/>
<!-- 运行robot_state_publisher节点,发布tf -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"
respawn="false" output="screen">
<remap from="/joint_states" to="/arm/joint_states" />
</node>
</launch>
最后再创建一个arm_gazebo_control.launch文件,其作用是,运行world launch和controller launch两个launch文件。
<launch>
<!-- 启动Gazebo -->
<include file="$(find arm_gazebo)/launch/arm_world.launch" />
<!-- 启动Gazebo controllers -->
<include file="$(find arm_gazebo)/launch/arm_gazebo_controller.launch" />
</launch>
运行arm_gazebo_control.launch文件,再另外打开两个terminal,分别运行
rqt
rosrun rviz rviz
通过rqt发送指令,可以在gazebo和rviz中同时看到机械臂的动作。
配置MoveIt
rosrun moveit_setup_assistant moveit_setup_assistant
依次加载模型,生成碰撞矩阵,生成规划组,如下图所示,一个arm规划组和一个gripper规划组,注意“3”那里,新版本的moveit那里不一样,空着就好。
添加一个初始位姿,命名为home
配置终端夹爪
最后再添加作者信息,生成配置文件就可以了。命名为arm_moveit_config,和前面创建的两个功能包arm_description, arm_gazebo并列放在一起。
用moveIt控制gazebo中的机械臂
在arm_gazebo功能包中创建关节轨迹控制器,一个控制器包含两个部分:yaml配置文件和launch运行文件,yaml配置文件放在功能包的config文件夹中,里面写着控制器的参数,运行文件放在launch文件夹中,用于运行控制器。
在arm_moveit_config功能包中创建一个gazebo控制器,同样是一组.yaml和.launch文件(注意这个launch文件的后缀是.launch.xml,这个文件自动存在,不需要创建,我们要改内容),launch文件加载yaml文件,分别放在config文件夹和launch文件夹。以及另外一个单独的.launch(moveit_planning_execution.launch)。
moveit功能包中的控制器和gazebo功能包中的控制器的关系是:通过ros的Action机制,moveit功能包中的控制器发布关节轨迹点指令,gazebo功能包中的控制器控制关节电机是关节到达轨迹点。
还要在arm_gazebo功能包中创建一个关节状态控制器,用于发布关节状态和tf变换。这个是为了在rviz中可视化用。
总结:一共三个控制器7个文件(3个.yaml和4个.launch)
arm_gazebo功能包中的命名为:trajectory_control.yaml arm_trajectory_controller.launch
arm_gazebo_joint_states.yaml arm_gazebo_states.launch
arm_moveit_config功能包中的命名为:controllers_gazebo.yaml arm_moveit_controller_manager.launch.xml
moveit_planning_execution.launch
以上文件的内容整理在后文。最后再创建一个.launch,其作用是一次性运行上面的所有.launch。命名为arm_bringup_moveit.launch,放在arm_gazebo功能包的launch文件夹。
运行最后写的那个.launch,就可以通过rviz中的moveit插件来控制gazebo中的机械臂了。
roslaunch marm_gazebo arm_bringup_moveit.launch
trajectory_control.yaml 内容:
arm:
arm_joint_controller:
type: "position_controllers/JointTrajectoryController"
joints:
- joint1
- joint2
- joint3
- joint4
- joint5
- joint6
gains:
joint1: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
joint2: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
joint3: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
joint4: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
joint5: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
joint6: {p: 1000.0, i: 0.0, d: 0.1, i_clamp: 0.0}
gripper_controller:
type: "position_controllers/JointTrajectoryController"
joints:
- finger_joint1
gains:
finger_joint1: {p: 50.0, d: 1.0, i: 0.01, i_clamp: 1.0}
arm_trajectory_controller.launch 内容:
<launch>
<rosparam file="$(find arm_gazebo)/config/trajectory_control.yaml" command="load"/>
<node name="arm_controller_spawner" pkg="controller_manager" type="spawner" respawn="false"
output="screen" ns="/arm" args="arm_joint_controller gripper_controller"/>
</launch>
arm_gazebo_joint_states.yaml 内容:
arm:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50
arm_gazebo_states.launch 内容:
<launch>
<!-- 将关节控制器的配置参数加载到参数服务器中 -->
<rosparam file="$(find arm_gazebo)/config/arm_gazebo_joint_states.yaml" command="load"/>
<node name="joint_controller_spawner" pkg="controller_manager" type="spawner" respawn="false"
output="screen" ns="/arm" args="joint_state_controller" />
<!-- 运行robot_state_publisher节点,发布tf -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"
respawn="false" output="screen">
<remap from="/joint_states" to="/arm/joint_states" />
</node>
</launch>
controllers_gazebo.yaml内容:
controller_manager_ns: controller_manager
controller_list:
- name: arm/arm_joint_controller
action_ns: follow_joint_trajectory
type: FollowJointTrajectory
default: true
joints:
- joint1
- joint2
- joint3
- joint4
- joint5
- joint6
- name: arm/gripper_controller
action_ns: follow_joint_trajectory
type: FollowJointTrajectory
default: true
joints:
- finger_joint1
- finger_joint2
arm_moveit_controller_manager.launch.xml内容:
<launch>
<!-- Set the param that trajectory_execution_manager needs to find the controller plugin -->
<arg name="moveit_controller_manager" default="moveit_simple_controller_manager/MoveItSimpleControllerManager" />
<param name="moveit_controller_manager" value="$(arg moveit_controller_manager)"/>
<!-- load controller_list -->
<!-- Arbotix -->
<!-- <rosparam file="$(find marm_moveit_config)/config/controllers.yaml"/> -->
<!-- Gazebo -->
<rosparam file="$(find arm_moveit_config)/config/controllers_gazebo.yaml"/>
</launch>
moveit_planning_execution.launch内容:
<launch>
# The planning and execution components of MoveIt! configured to
# publish the current configuration of the robot (simulated or real)
# and the current state of the world as seen by the planner
<include file="$(find arm_moveit_config)/launch/move_group.launch">
<arg name="publish_monitored_planning_scene" value="true" />
</include>
# The visualization component of MoveIt!
<include file="$(find arm_moveit_config)/launch/moveit_rviz.launch"/>
<!-- We do not have a robot connected, so publish fake joint states -->
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher">
<param name="/use_gui" value="false"/>
<rosparam param="/source_list">[/arm/joint_states]</rosparam>
</node>
</launch>
arm_bringup_moveit.launch内容:
<launch>
<!-- Launch Gazebo -->
<include file="$(find arm_gazebo)/launch/arm_world.launch" />
<!-- ros_control arm launch file -->
<include file="$(find arm_gazebo)/launch/arm_gazebo_states.launch" />
<!-- ros_control trajectory control dof arm launch file -->
<include file="$(find arm_gazebo)/launch/arm_trajectory_controller.launch" />
<!-- moveit launch file -->
<include file="$(find arm_moveit_config)/launch/moveit_planning_execution.launch" />
</launch>
一些可能出现的报错:
Tried to advertise on topic but the topic is already advertised
解决办法:
arm_moveit_config功能包中,sensors_3d.yaml文件中,出现了重名topic,修改第二个topic的名称
Unable to identify any set of controllers that can actuate the specified joints:
解决办法:修改
工作空间/src/marm_moveit_config/launch/trajectory_execution.launch.xml
删掉 pass_all_args="true"
通过python的接口运行moveit
上面是通过rviz中的插件来控制moveit,下面通过py文件来运行moveit,不需要在rviz中操作moveit插件。
还是先运行arm_bringup_moveit.launch
再运行这个py文件,group_name是在moveit_setup_assistant中配置的group,在joint_goal那里设定关节目标角度 弧度制。
import sys
import rospy
import moveit_commander
from moveit_commander import PlanningSceneInterface
moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node('move_group_python_interface_tutorial', anonymous=True)
## Instantiate a `RobotCommander`_ object. Provides information such as the robot's
## kinematic model and the robot's current joint states
robot = moveit_commander.RobotCommander()
## Instantiate a `PlanningSceneInterface`_ object. This provides a remote interface
## for getting, setting, and updating the robot's internal understanding of the
## surrounding world:
scene = moveit_commander.PlanningSceneInterface()
## Instantiate a `MoveGroupCommander`_ object. This object is an interface
## to a planning group (group of joints). In this tutorial the group is the primary
## arm joints in the Panda robot, so we set the group's name to "panda_arm".
## If you are using a different robot, change this value to the name of your robot
## arm planning group.
## This interface can be used to plan and execute motions:
group_name = "arm"
move_group = moveit_commander.MoveGroupCommander(group_name)
joint_goal = move_group.get_current_joint_values()
print(joint_goal)
joint_goal[0] = 0
joint_goal[1] = 0.9
joint_goal[2] = 0
joint_goal[3] = 0
# The go command can be called with joint values, poses, or without any
# parameters if you have already set the pose or joint target for the group
move_group.go(joint_goal, wait=True)
# Calling ``stop()`` ensures that there is no residual movement
move_group.stop()
## END_SUB_TUTORIAL
# For testing:
current_joints = move_group.get_current_joint_values()
print(current_joints)
如果是pycharm运行py文件,注意interpreter选择,我的虚拟机安装的是ubuntu18 和ros melodic,需要python2.7的interpreter,另外还要把melodic的python包放进pycharm的project structure。另外,在pycharm中添加两个环境变量。以上。