【十九】【动态规划】518. 零钱兑换 II、279. 完全平方数、474. 一和零,三道题目深度解析

news2024/11/16 4:19:19

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

518. 零钱兑换 II - 力扣(LeetCode)

题目解析

状态表示

这个问题本质上是,

  1. 从一些数中挑选一些数出来,然后再满足某些限定条件下,解决一些问题。而背包问题就是用来解决组合问题。

  2. 每一个物品都是无限多个,因此属于完全背包问题。

完全背包实际上是一个模版,我们根据完全背包的状态表示,去定义我们希望得到的状态表示。

完全背包的状态表示是,

定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

定义dp[i][j]表示从前i个物品中挑选,总体积恰好为j,所有选法中,所能达到的最大价值。

因此我们可以定义dp[i][j]表示从前i个硬币中挑选,总和正好为j,一共有多少种选法。

状态转移方程

根据最后一个位置的具体情况进行分类讨论。

  1. 如果选择0个第i个硬币, 此时相当于在前i-1个硬币中挑选,总和正好为j,一共有多少种选法。此时dp[i][j]=dp[i-1][j]。

  2. 如果选择1个第i个硬币, 此时相当于,在前i-1个硬币中挑选,总和正好为j-coins[i],一共有多少种选法,在这些选法中,把1个第i个硬币放进去,此时的选法就等于在前i个硬币中挑选,总和正好为j,而这时候有多少种选法呢?有dp[i-1][j-coins[i]]种选法,此时dp[i][j]=dp[i-1][j-coins[i]]。

  3. 如果选择2个第i个硬币, 此时相当于,在前i-1个硬币中挑选,总和正好为j-2*coins[i],一共有多少种选法,在这些选法中,把2个第i个硬币放进去,此时的选法就等于在前i个硬币中挑选,总和正好为j,而这时候有多少种选法呢?有dp[i-1][j-2*coins[i]]种选法,此时dp[i][j]=dp[i-1][j-2*coins[i]]。

  4. ............

  5. 一直到全部选择第i个硬币为止。

综上所述,dp[i][j]=dp[i-1][j]+dp[i-1][j-coins[i]]+dp[i-1][j-2*coins[i]]+.........

我们发现一个很有趣的东西,等式的右边,横坐标不变,纵坐标依次减少coins[i],因此我们可以尝试推导dp[i][j-coins[i]]。

dp[i][j-coins[i]]=dp[i-1][j-coins[i]]+dp[i-1][j-2*coins[i]]+........,而

dp[i][j]=dp[i-1][j]+dp[i-1][j-coins[i]]+dp[i-1][j-2*coins[i]]+.........,

因此我们可以把dp[i][j]写成这样,dp[i][j]=dp[i-1][j]+dp[i][j-coins[i]];

这样我们就将O(n)减低成O(1)。

而上述coins[i]表示的并不是表示第i个硬币,因为coins[0]表示第一个硬币,所以第i个硬币应该是coins[i-1]表示第i个硬币,所以,状态转移方程应该为,dp[i][j]=dp[i-1][j]+dp[i][j-coins[i-1]];

综上所述,状态转移方程为,

 
            dp[i][j] = dp[i - 1][j];
            if (j - coins[i - 1] >= 0)
                dp[i][j] += dp[i][j - coins[i - 1]];

初始化

根据状态转移方程,我们知道在推导(i,j)位置状态的时候,需要用到(i-1,j)(i,j-coins[i-1])位置的状态。而使用(i,j-coins[i-1])状态时,j-coins[i-1]>=0,此时一定不会越界,所以我们只需要考虑(i-1,j)位置状态即可。

在蓝色部分,即第一行,会发生越界的情况,此时初始化这些位置的状态时,没有前驱状态值,所以我们需要初始化这些位置的状态。

第一行i==0,表示不选择硬币,硬币总和为j,一共的选法,此时(0,0)位置为1,即不选一种方法,而其他位置都为0,没有选法可以达到。其他位置是不存在,而不存在正常来说要用特殊的标志表示,但是在这道题中,用0表示不存在也不会有影响。所以不存在也用0表示。

综上所述,初始化为,

 
   dp[0][0] = 1;

填表顺序

根据状态转移方程,我们知道在推导(i,j)位置状态的时候,需要用到(i-1,j)(i,j-coins[i-1])位置的状态。

  1. 固定i改变j, i的变化需要从小到大,因为可能要用到(i,j-coins[i-1])的状态,所以j的变化也需要从小到大。

  2. 固定j改变i, j的变化需要从小到大,因为可能要用到(i-1,j)位置的状态,所以i的变化也需要从小到大。

返回值

状态表示为,定义dp[i][j]表示从前i个硬币中挑选,总和正好为j,一共有多少种选法。

结合题目意思,我们要返回,从前n个硬币中挑选,总和正好为m,一共有多少种选法。

故返回dp[n][m],(m为amount)

代码实现

 
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int n = coins.size();
        int m = amount;
        vector<vector<int>> dp(n + 1, vector<int>(m + 1));
        dp[0][0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                if (j - coins[i - 1] >= 0)
                    dp[i][j] += dp[i][j - coins[i - 1]];
            }
        }

        return dp[n][m];
    }
};

279. 完全平方数 - 力扣(LeetCode)

题目解析

状态表示

这个问题本质上是,

  1. 从一些数中挑选一些数出来,然后再满足某些限定条件下,解决一些问题。而背包问题就是用来解决组合问题。

  2. 每一个物品都是无限多个,因此属于完全背包问题。

完全背包实际上是一个模版,我们根据完全背包的状态表示,去定义我们希望得到的状态表示。

完全背包的状态表示是,

定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

定义dp[i][j]表示从前i个物品中挑选,总体积恰好为j,所有选法中,所能达到的最大价值。

因此我们可以定义dp[i][j]表示从前i个数的完全平方数中挑选,总和正好为j,完全平方数的最少数量。

状态转移方程

根据最后一个位置的具体情况进行分类讨论。

  1. 如果选择0个第i个数的完全平方数, 此时相当于在前i-1个数的完全平方数中挑选,总和正好为j,这种情况下完全平方数的最少数量,此时dp[i][j]=dp[i-1][j]。i

  2. 如果选择1个第i个数的完全平方数, 此时相当于在前i-1个数的完全平方数中挑选,总和正好为j-i^2,完全平方数的最少数量,此时再加上1个第i个数的完全平方数,相当于在前i个数的完全平方数中挑选,总和正好为j,这种情况下完全平方数的最少数量,即dp[i][j]=dp[i-1][j-i^2]+1。

  3. 如果选择2个第i个数的完全平方数, 此时相当于在前i-1个数的完全平方数中挑选,总和正好为j-2*i^2,完全平方数的最少数量,此时再加上2个第i个数的完全平方数,相当于在前i个数的完全平方数中挑选,总和正好为j,这种情况下完全平方数的最少数量,即dp[i][j]=dp[i-1][j-2*i^2]+2。

  4. ..........

  5. 一直到全部选择第i个数的完全平方数。

综上所述,dp[i][j]=min(dp[i-1][j],dp[i-1][j-i^2]+1,dp[i-1][j-2*i^2]+2,.........)

我们发现一个很有趣的东西,等式右边,横坐标不变,纵坐标依次减少i^2。因此我可以尝试推导dp[i][j-i^2]。

得到dp[i][j-i^2]=min(dp[i-1][j-i^2],dp[i-1][j-2*i^2]+1,dp[i-1][j-3*i^2]+2,........)

为了统一,dp[i][j-i^2]+1=min(dp[i-1][j-i^2]+1,dp[i-1][j-2*i^2]+2,dp[i-1][j-3*i^2]+3,........)

又dp[i][j]=min(dp[i-1][j],dp[i-1][j-i^2]+1,dp[i-1][j-2*i^2]+2,.........)

故可以将dp[i][j]写成这样,dp[i][j]=min(dp[i-1][j],dp[i][j-i^2]+1);

当dp[i-1][j]或者dp[i][j-i^2]不存在的时候,不能选到了他们,因此我们可以将不存在定义为INF=0x3f3f3f3f,因为是取两者小的一个,所以即使不存在也不会取到他们。

综上所述,状态转移方程为,

 
        dp[i][j] = dp[i - 1][j];
        if (j - i * i >= 0)
            dp[i][j] = min(dp[i][j], dp[i][j - i * i] + 1);

初始化

根据状态转移方程,我们知道在推导(i,j)位置的状态时,需要用到(i-1,j)(i,j-i^2)的状态。

而用(i,j-i^2)的状态时,j-i^2一定不会越界,所以我们只需要考虑(i-1,j)的状态即可。

因此在推导第一行的状态时,会发生越界的情况,此时没有前驱状态值,所以我们需要初始化第一行的状态。

第一行,i==0,表示不选数,总和为j,平方数的个数,(0,0)位置状态应该初始化为0,其他位置状态为不存在,我们根据前面的分析,得出不存在应该初始化为0x3f3f3f3f。

填表顺序

根据状态转移方程,我们知道在推导(i,j)位置的状态时,需要用到(i-1,j)(i,j-i^2)的状态。

  1. 固定i,改变j, i的变化需要从小到大,因为要使用到(i,j-i^2)位置状态,所以j的变化也需要从小到大。

  2. 固定j,改变i, j的变化需要从小到大,因为要使用到(i-1,j)位置状态,所以i的变化也需要从小到大。

返回值

根据状态表示定义dp[i][j]表示从前i个数的完全平方数中挑选,总和正好为j,完全平方数的最少数量。

结合题目要求,我们需要返回,从前m个数的完全平方数中挑选,总和正好为n,完全平方数的最少数量。

(m的完全平方数应该小于等于n,而m+1的完全平方数>n)

返回dp[m][n];

代码实现

 
class Solution {
public:
    int numSquares(int n) {
        int m = 1;
        while (m * m <= n)
            m++;
        m--;
        int INF = 0x3f3f3f3f;
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, INF));
        dp[0][0] = 0;

        for (int i = 1; i <= m; i++) {
            for (int j = 0; j <= n; j++) {
                dp[i][j] = dp[i - 1][j];
                if (j - i * i >= 0)
                    dp[i][j] = min(dp[i][j], dp[i][j - i * i] + 1);
            }
        }

        return dp[m][n];
    }
};

474. 一和零 - 力扣(LeetCode)

题目解析

状态表示

这个问题本质上是,

  1. 从一些数中挑选一些数出来,然后再满足某些限定条件下,解决一些问题。而背包问题就是用来解决组合问题。

  2. 每一个物品都是无限多个,因此属于完全背包问题。

完全背包实际上是一个模版,我们根据完全背包的状态表示,去定义我们希望得到的状态表示。

完全背包的状态表示是,

定义dp[i][j]表示从前i个物品中挑选,总体积不超过j,所有选法中,所能达到的最大价值。

定义dp[i][j]表示从前i个物品中挑选,总体积恰好为j,所有选法中,所能达到的最大价值。

因此我们可以定义dp[i][j][k]表示从前i个字符串中挑选,字符0的个数不超过j,字符1的个数不超过k,所有选法中,子集的最大个数。

状态转移方程

根据最后一个位置的具体情况进行分类讨论。

假设第i个字符串中,字符0的个数为a,字符1的个数为b。

  1. 不选第i个字符串, 相当于在前i-1个字符串里面挑选,使字符0的个数不超过j,字符1的个数不超过k,所有选法中,子集的最大个数。此时dp[i][j][k]=dp[i-1][j][k];

  2. 挑选第i个字符串, 那么接下来,我需要在前i-1个字符串里面挑选出一些字符串,使得字符0的个数不超过j-a,字符1的个数不超过k-b,然后在这些字符串中加入第i个字符串,此时相当于在前i个字符串里面挑选出一些字符串,使得字符0的个数不超过j,字符1的个数不超过k。此时dp[i][j][k]=dp[i-1][j-a][k-b]+1。

综上所述,状态转移方程为,

 
    dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-a][k-b]+1)

需要推导(i,j,k)位置的状态,需要用到(i-1,j,k)(i-1,j-a,k-b)位置的状态,使用前提就是不能越界,对于(i-1,j,k)可以初始化第一行处理,而对于(i-1,j-a,k-b)初始化不好处理,所以我们选择直接考虑其存在的情况,即if(j>=a&&k>=b)才使用。

因此状态转移方程可以写成,

 
        dp[i][j][k] = dp[i - 1][j][k];
        if (j >= a && k >= b)
            dp[i][j][k] =
                max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1);

初始化

根据状态转移方程,我们知道想要推导(i,j,k)位置的状态时,需要用到(i-1,j,k)(i-1,j-a,k-b)位置的状态。而(i-1,j-a,k-b)位置的状态的使用,我们已经考虑过j-a,和k-b不越界的情况,所以我们只需要考虑i-1以及(i-1,j,k)位置状态不越界的情况。

因此我们需要初始化i==0的情况。

当i==0时,表示不选字符串,字符0个数不超过j,字符1的个数不超过k,所有情况中,字符串个数最大值。所以i==0时,所有位置状态应该为0。

填表顺序

根据状态转移方程,我们知道想要推导(i,j,k)位置的状态时,需要用到(i-1,j,k)(i-1,j-a,k-b)位置的状态。

  1. 固定i,改变j,改变k i的变化需要从小到大,j、k的变化可以从小到大也可以从大到小。因为i从小到大变化,就满足了在推导(i,j,k)位置状态时,(i-1,,)的状态已经得到。

  2. 固定j,改变i,改变k j的变化需要从小到大,因为需要用到(i-1,j,k)位置的状态,所以i的变化需要从小到大,k的变化可以从小到大也可以从大到小。

  3. 固定k,改变i,改变j k的变化需要从小到大,因为需要用到(i-1,j,k)位置的状态,所以i的变化需要从小到大,j的变化可以从小到大也可以从大到小。

这三种情况,后面的顺序都可以交换。

返回值

状态表示定义dp[i][j][k]表示从前i个字符串中挑选,字符0的个数不超过j,字符1的个数不超过k,所有选法中,子集的最大个数。

结合题目意思,我们需要从前len个字符串中挑选,字符0的个数不超过m,字符1的个数不超过n,所有选法中,子集的最大个数。所以我们需要返回dp[len][m][n],(len是strs中字符串的个数)

代码实现

 
class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        int len = strs.size();
        vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));
        for (int i = 1; i <= len; i++) {

            int a = 0, b = 0;
            for (auto ch : strs[i - 1])
                if (ch == '0')
                    a++;
                else
                    b++;
            for (int j = m; j >= 0; j--)
                for (int k = n; k >= 0; k--) {
                    dp[i][j][k] = dp[i - 1][j][k];
                    if (j >= a && k >= b)
                        dp[i][j][k] =
                            max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1);
                }
        }
        return dp[len][m][n];
    }
};

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1369222.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LoRa网关在智能冷链物流中的应用解决方案

随着物联网技术的不断发展&#xff0c;智能冷链物流成为了物流行业的一个重要领域。在冷链物流中&#xff0c;对于货物的温度、湿度等环境变量的监测和控制非常关键&#xff0c;而这些数据的传输需要一个高效可靠的通信方式。LoRa技术作为一种低功耗广域网通信技术&#xff0c;…

详解java继承

目录 一 、为什么需要继承 二、准备工作&#xff1a;用java代码先定义狗类、猫类、动物类&#xff0c;这是代码准备如下 三、继承代码实现 四、 子类中访问父类的成员方法 4.1. 成员方法名字不同 4.2 成员方法名字相同 五、子类构造方法 扩展&#xff1a;如果你对子类和…

jvm虚拟机初识

JVM Java虚拟机就是二进制字节码的运行环境&#xff0c;负责装载字节码到其内部&#xff0c;解释/编译为对应平台上的机器指令执行。每一条Java指令&#xff0c;Java虚拟机规范中都有详细定义&#xff0c;如怎么取操作数&#xff0c;怎么处理操作数&#xff0c;处理结果放在哪…

什么是API网关代理?

带有API网关的代理服务显着增强了用户体验和性能。特别是对于那些使用需要频繁创建和轮换代理的工具的人来说&#xff0c;使用 API 可以节省大量时间并提高效率。 了解API API&#xff08;即应用程序编程接口&#xff09;充当服务提供商和用户之间的连接网关。通过 API 连接&a…

Python pip 常用指令

前言 Python的pip是一个强大的包管理工具&#xff0c;它可以帮助我们安装、升级和管理Python的第三方库。以下是一些常用的pip指令。 1. 安装第三方库 使用pip安装Python库非常简单&#xff0c;只需要使用pip install命令&#xff0c;后面跟上库的名字即可。 # 安装virtuale…

Java中的网络编程

文章目录 网络基础知识IP 地址端口协议 Java 中网络编程InetAddress&#xff08;静态类&#xff09;UDP 通信原理UDP 发送数据步骤UDP 接收数据步骤UDP 发送接收案例 TCP 通信原理TCP 发送数据步骤TCP 接收数据步骤TCP 发送接收案例 网络基础知识 概述&#xff1a;在网络通信协…

计算机组成原理19——控制单元的功能和实现1

本系列文章是学习了网课《哈尔滨工业大学–计算机组成原理》之后&#xff0c;用以梳理思路而整理的听课笔记及相关思维拓展。本文涉及到的观点均为个人观点&#xff0c;如有不同意见&#xff0c;欢迎在评论区讨论。 目录 四种周期下的微操作命令取指周期间址周期执行周期非访存…

antv/x6_2.0学习使用(四、边)

一、添加边 节点和边都有共同的基类 Cell&#xff0c;除了从 Cell 继承属性外&#xff0c;还支持以下选项。 属性名类型默认值描述sourceTerminalData-源节点或起始点targetTerminalData-目标节点或目标点verticesPoint.PointLike[]-路径点routerRouterData-路由connectorCon…

智慧旅游景区解决方案:PPT全文49页,附下载

关键词&#xff1a;智慧景区建设&#xff0c;智慧旅游平台&#xff0c;智慧旅游运营检测系统项目&#xff0c;智慧文旅&#xff0c;智慧景区开发与管理&#xff0c;智慧景区建设核心&#xff0c;智慧景区开发与管理 一、智慧景区建设现状 1、基础设施建设&#xff1a;智慧景区…

离散数学2

复习一下&#xff0c;P->Q,只有真的原因推假的结果&#xff0c;才是错的&#xff08;正常逻辑&#xff09;&#xff0c;其余情况都是对的&#xff08;善意规定以及正常逻辑&#xff09; 反P析取Q&#xff0c;可以这样理解&#xff0c;因为是析取&#xff0c;结果为T的可能性…

强化学习求解TSP:Qlearning求解旅行商问题(Traveling salesman problem, TSP)提供Python代码

一、Qlearning简介 Q-learning是一种强化学习算法&#xff0c;用于解决基于奖励的决策问题。它是一种无模型的学习方法&#xff0c;通过与环境的交互来学习最优策略。Q-learning的核心思想是通过学习一个Q值函数来指导决策&#xff0c;该函数表示在给定状态下采取某个动作所获…

Spark Core--加强

RDD的持久化 RDD缓存 当RDD被重复使用&#xff0c;或者计算该RDD比较容易出错&#xff0c;而且需要消耗比较多的资源和时间的时候&#xff0c;我们就可以将该RDD缓存起来。 主要作用: 提升Spark程序的计算效率 注意事项: RDD的缓存可以存储在内存或者是磁盘上&#xff0c;甚至…

为布偶猫精心挑选的三款主食冻干,K9、sc、希喂深度解析对比

喂养布偶猫的小技巧&#xff1a;如何满足其食肉天性同时呵护其肠胃&#xff1f;主食冻干是答案&#xff01;它不仅符合猫咪天然的饮食结构&#xff0c;还采用新鲜生肉为原料。搭配其他营养元素&#xff0c;既美味又营养&#xff0c;还能增强抵抗力。我们将为您测评市场上热门的…

ubuntu 20.04下 Tesla P100加速卡使用

1.系统环境&#xff1a;系统ubuntu 20.04, python 3.8 2.查看cuDNN/CUDA与tensorflow的版本关系如下&#xff1a; Build from source | TensorFlow 从上图可以看出&#xff0c;python3.8 对应的tensorflow/cuDNN/CUDA版本。 3.安装tensorflow #pip3 install tensorflow 新版…

C++其他语法总结

目录 《C基础语法总结》《C面向对象语法总结(一&#xff09;》《C面向对象语法总结(二&#xff09;》《C面向对象语法总结(三&#xff09;》 一、运算符重载 运算符重载可以为运算符增加一些新的功能全局函数、成员函数都支持运算符重载常用的运算符重载示例 class Point {…

Python私有变量的定义与访问

class Student():def __init__(self, name, age):self.name nameself.age ageself.__score 0def marking(self, score):if score < 0:return 分数不能为0self.__score scoreprint(self.name 同学本次得分是: str(self.__score)) def __talk(self): # 私有的类可通过在…

qss设置某一个widget下的Checkbox的样式

#ObjectName 控件名称{属性&#xff1a;值&#xff1b;属性1&#xff1a;值1} 如下&#xff1a; 效果&#xff1a;

【大数据】分布式协调系统 Zookeeper

分布式协调系统 Zookeeper 1.Zookeeper 的特点2.Zookeeper 的数据结构3.Zookeeper 的应用场景3.1 统一命名服务3.2 统一配置管理3.3 统一集群管理3.4 服务器动态上下线3.5 软负载均衡 Zookeeper 是 Apache 开源的一个顶级项目&#xff0c;目的是为分布式应用提供协调服务&#…

910b上跑Chatglm3-6b进行流式输出【pytorch框架】

文章目录 准备阶段避坑阶段添加代码结果展示 准备阶段 配套软件包Ascend-cann-toolkit和Ascend-cann-nnae适配昇腾的Pytorch适配昇腾的Torchvision Adapter下载ChatGLM3代码下载chatglm3-6b模型&#xff0c;或在modelscope里下载 避坑阶段 每个人的服务器都不一样&#xff0…

01-连接池项目背景:C++的数据库操作

从0开始学习C与数据库的联动 1.原始方式-使用MySQL Connector/C 提供的API查询 1.1 数据库预操作 我的本地电脑上有mysql数据库&#xff0c;里面预先创建了一个database名叫chat&#xff0c;用户名root&#xff0c;密码password。 1.2 Visual Studio预操作 在Windows上使用…