算法的复杂度分析

news2024/11/28 8:36:47

封面:算法的复杂度分析.png

[王有志](https://www.yuque.com/wangyouzhi-u3woi/dfhnl0/hqrch62un0cc9sp2?singleDoc# 《🔥快来关注我》),一个分享硬核Java技术的互金摸鱼侠
加入Java人的提桶跑路群:[共同富裕的Java人](https://www.yuque.com/wangyouzhi-u3woi/dfhnl0/nwry2mdlktok50bt?singleDoc# 《🔥共同富裕的Java人》)

今天我们只有一个内容:算法的复杂度分析。算法的复杂度分析可以说是算法中的灵魂,有了它我们才能去评价一个算法优劣。

算法的评价标准

我们可以套用“多快好省”这个标准去衡量算法:

  • ,适用场景多,适用于一个问题的算法没有太大的意义;
  • ,运行速度快,过慢的算法没有太大的意义;
  • ,代码质量好,优雅的实现和健壮的程序;
  • ,占用资源省,用得越省算法越好。

有了衡量算法的标准,我们还需要一套衡量算法的方法。

算法的复杂度分析

算法是解决一类问题思想,因此我们不必关注的标准;的标准虽然有一定的共识,如可读性,健壮性,但是无法量化。而是通过执行时间内存占用来体现的,可以进行量化分析。
通常我们将算法的执行时间和内存占用统称为算法执行效率,而对算法执行效率的分析称为算法复杂度分析。
算法的执行效率,会受到问题规模硬件环境的影响。在设计算法时,我们无法预测算法执行的硬件环境,因此我们需要一种能够忽略硬件环境,并能客观展示算法的执行效率随问题规模增长而改变的分析方法。

渐进复杂度分析

相信你一定听说过“大O记号”和“(渐进)时间复杂度”吧?
实际上这就是通过渐进分析得到的结果。我们先来看下邓俊峰老师的解释:

在评价算法运行效率时,我们往往可以忽略其处理小规模问题时的能力差异,转而关注其在处理更大规模问题时的表现。其中的原因不难理解,小规模问题所需的处理时间本来就相对更少,故此时不同算法的实际效率差异并不明显;而在处理更大规模的问题时,效率的些许差异都将对实际执行效果产生巨大的影响。这种着眼长远、更为注重时间复杂度的总体变化趋势和增长速度的策略与方法,即所谓的渐进分析(asymptotic analysis)。

这段话不难理解,简单来说就是,渐进分析关注的是算法执行效率随问题规模增长的变化趋势和增长速度。如果绘制成函数曲线,我们就是要看这条曲线“陡不陡”。
如果将执行效率拆分开来,算法的复杂度又可以分为渐进时间复杂度和渐进空间复杂度。
渐进时间复杂度分析中,可以粗略的认为每行代码的执行时间是一致的,从而对代码执行次数进行分析。如果借助了编程语言的工具库,还需要考虑这部分的时间成本。
渐进空间复杂度分析中,原始输入的数据不计入到空间占用中,只有在算法中创建的才会计入
随着硬件技术的发展,内存越来越廉价,在设计算法时,也可以考虑通过使用更多的内存,来换取更快的执行速度,即常说的空间换时间。不过,如果想要设计一个好的算法,还是需要两者兼顾的,在保证极低的时间成本下,尽可能的压缩空间成本

大O记号

渐进分析中,我们通常使用大O记号来表示分析的结果。不必过多的关注大O记号的由来,只需要记住大O记号为了刻画变化趋势和增长速度,可以忽略掉常数项和低次项
邓俊峰老师也给出了大O记号的结论:

在大O记号的意义下,函数各项正的常系数可以忽略并等同于1。多项式中的低次项均可忽略,只需保留最高次项。可以看出,大O记号的这些性质的确体现了对函数总体渐进增长趋势的关注和刻画。

我们不难看出,大O记号使用最高次项表示算法的复杂度,是一种对算法复杂度最坏情况的估算

大Ω记号和大Θ记号

除了大O记号外,用来表示算法复杂度的还有大Ω记号和大Θ记号,不过由于使用较少,我们在这里只引用邓俊峰老师的一句解释:

这里的称作“大Ω记号”(big-Ω notation)。与大O记号恰好相反,大Ω记号是对算法执行效率的乐观估计。

也就是说,大Ω记号是用来表示算法执行的最好情况的
大Ω记号和大O记号确定了算法复杂度的上下边界,那么有没有准确估计算法复杂度的记号呢?当然是有的,这种准确估计(就很矛盾)算法复杂度的表示方法称为大θ记号
不过在日常的计算中,我们更倾向于使用大O记号(人类都是悲观的),但是如果你遇到了大Ω记号和大θ记号,也要记得它们的含义。
好了,概念说了很多,下面我们来尝试计算一些渐进时间复杂度。

计算渐进时间复杂度

在我们了解了复杂度分析的概念和表示方法后,我们尝试着去计算几种常见的时间复杂度。

常数复杂度

常数复杂度是所有算法的终极梦想,因为这种复杂度代表着无论问题规模多大,都能在明确的时间内执行完成。
随便搞一段代码:

public int add(int a, int b) {
	int sum = a + b;
	return sum;
}

这段代码中,无论a和b输入什么,都只会执行3行代码,这种不随着输入规模而改变执行时间的就是常数级复杂度
大O记号中表示为: O ( 1 ) O(1) O(1)。无论执行几行,只要是能够确定的,都表示为 O ( 1 ) O(1) O(1)

线性复杂度

再搞一段代码:

public void add(int n) {
int result = 0;
for (int i = 0; i < n; i++) {
	result ++;
}
}

不难看出,这段代码总共会执行 ( 1 + 2 n ) (1+2n) (1+2n)行代码,那么执行时间也是 ( 1 + 2 n ) (1+2n) (1+2n)。根据大O记号中的结论,我们可以忽略掉所有的常数,得到的时间复杂度是 O ( n ) O(n) O(n)
事实上,2n和n的增长趋势是有一定差异的,但整体的变化趋势是随着n的增大而线性增大的,因此我们依旧可以忽略掉常数项和常数系数。
图1:线性复杂度.png

平方复杂度

再再搞一段代码:

public void loop(int n) {
int result = 0;
for (int i = 0; i < n; i++) {
	result ++;
}

for (int i = 0; i < n; i++) {
	for (int j = 0; i < n; i++) {
		result ++;
	}
}
}

这段代码的执行次数也是一眼望穿,总共执行 ( 1 + 2 n + n + n 2 ) (1+2n+n+n^2) (1+2n+n+n2)行,执行时间也是 ( 1 + 2 n + n + n 2 ) (1+2n+n+n^2) (1+2n+n+n2)。合并后可以得到执行时间是 ( 1 + 3 n + n 2 ) (1+3n+n^2) (1+3n+n2),按照大O记号渐进时间复杂度是 O ( n 2 ) O(n^2) O(n2)
我们再来对比下低次项n对整体趋势的影响:
图2:平方复杂度.png
可以看到,在这个级别的复杂度中,低次项n对整体趋势影响已经很小了,因此我们忽略掉低次项,对整体的变化趋势和增长速度影响非常小。

对数复杂度

再再再搞一段代码:

public void multiplication(int n) {
int result = 1;
while (result <= n) {
	result = result * 2;
}
}

可以尝试着计算这段代码的时间复杂度,这里需要用上一丢丢的高中数学知识。变量result每次的变化都是原来的2倍,我们可以得到每次循环中result的值如下:

  • 第1次: 2 0 2^0 20
  • 第2次: 2 1 2^1 21
  • 第3次: 2 2 2^2 22
  • 第X次: 2 x ≥   n 2x\geq n 2x n

那么我们只需要求解 2 x = n 2^x=n 2x=n中x的值即可获得这段代码的时间复杂度。在大O记号下,时间复杂度为 O ( log ⁡ _ n ) O(\log\_{}{n}) O(log_n)
我们通过一张函数图像,来看下对数复杂度的增长趋势:
图3:对数复杂度.png

更多复杂度

以上是我们常见的时间复杂度。除此之外还有一些时间复杂度,我们将它们的函数曲线放到同一坐标系中感受下他们的变化趋势:
图4:更多的复杂度.png
可以看出,除了常数级时间复杂度外,对数级 O ( log ⁡ _ n ) O(\log\_{}{n}) O(log_n)也是非常理想的状态,这也是我们在设计算法是努力的方向。
最恐怖的是阶乘级复杂度。计算机领域中有一道著名的问题:旅行商问题,它的时间复杂度就是阶乘级的。另外旅行商问题也是NP完全问题。而由NP问题引发的P对NP问题是克雷数学研究所高额悬赏的七个”千禧年难题“之一。

最好,最坏和平均情况

这是今天的最后一段代码了:

public int main(int[] array, int target) {
	for(int i = 0; i < array.length; i++) {
		if(array[i] == target) {
			return i;
		}
	}
	return -1;
}

这段代码的逻辑很简单,循环查找数组中是否存在目标数字,如果存在就返回下标,不存在则返回 − 1 −1 1
如果target在首位,那么我们只需要执行一遍循环就可以查找到,此时的时间复杂度是 O ( 1 ) O(1) O(1)。如果target不在数组中,或者在数组的最后一位,那么需要遍历整个数组,此时的时间复杂度是 O ( n ) O(n) O(n)
这就是常说的最好情况和最坏情况。
接下来我们来了解下平均情况,还是先来看下邓俊峰老师的解释:

有时也需要考查所谓的平均情况(average case),也就是按照某种约定的概率分布,将规模为n的所有输入对应的计算时间加权平均。

在这段代码中,总共存在 ( n + 1 ) (n+1) (n+1) 种情况,其中n种情况是在数组中,1种情况是在数组外,假设每次循环代码的执行时间相同,根据每种情况的概率我们可以得到平均的执行时间为:
1 n + 1 + 2 n + 1 + 3 n + 1 + … + n − 1 n + 1 + n n + 1 + n + 1 n + 1 =   1 + 2 + 3 + … + ( n − 1 ) + n + ( n + 1 ) n + 1 = n 2 + x n + 1 2 n + 2 \frac{1}{n+1}+\frac{2}{n+1}+\frac{3}{n+1}+…+\frac{n-1}{n+1}+\frac{n}{n+1}+\frac{n+1}{n+1}= \frac{1+2+3+…+(n-1)+n+(n+1)}{n+1}=\frac{n^2+xn+1}{2n+2} n+11+n+12+n+13++n+1n1+n+1n+n+1n+1= n+11+2+3++(n1)+n+(n+1)=2n+2n2+xn+1
忽略掉所有常数项和常数系数后,我们得到:
n 2 + n n = 1 + n \frac{n^2+n}{n}={1+n} nn2+n=1+n
那么此时我们得到的时间复杂度就是平均情况的时间复杂度,大O记号为 O ( n ) O(n) O(n)

结语

今天的内容到这里就结束了,我们来回顾下都聊了哪些内容:
今天的主要内容是算法的复杂度分析,解释了算法复杂度分析渐进分析大O记号大Ω记号大θ记号,其中渐近分析和大O记号是数学概念引申到计算机领域的,因此会有一些数学证明,好在我们的算法和数学比起来还是很简单的,分析起来难度也不是很大。
然后计算了3种常见的渐进时间复杂度,并通过函数曲线展示了其余量级渐进复杂度的变化情况。

练习

最后是一道练习,来自邓俊峰老师的公开课《数据结构》复杂度分析的作业,如下:

x = n;
y = 1;
while(x >= (y-1)*(y-1)) {
	y++;
}

请计算以上程序的时间复杂度。


如果本文对你有帮助的话,还请多多点赞支持。如果文章中出现任何错误,还请批评指正。最后欢迎大家关注分享硬核Java技术的金融摸鱼侠[王有志](https://www.yuque.com/wangyouzhi-u3woi/dfhnl0/hqrch62un0cc9sp2?singleDoc# 《🔥快来关注我》),我们下次再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365478.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

pytorch集智-2单车预测器

完整代码在个人主页简介链接pytorch路径下可找到 1 单车预测器1.0 1.1 人工神经元 对于sigmoid函数来说&#xff0c;w控制函数曲线的方向&#xff0c;b控制曲线水平方向位移&#xff0c;w控制曲线在y方向的幅度 1.2 多个人工神经元 模型如下 数学上可证&#xff0c;有限神经…

前端ui库搜集

涟漪动画效果 - MDUI 开发文档, Material Design 前端框架添加涟漪动画效果后&#xff0c;会在点击元素时&#xff0c;产生向外扩散的水波纹效果。https://www.mdui.org/docs/ripple#ripple https://semantic-ui.com/ https://getuikit.com/ https://www.purecss.cn/grids.htm…

iview table 表格合并行鼠标悬停时的高亮

背景&#xff1a; Iview里面的表格没有提供鼠标移入移出的事件。 而且当开启鼠标悬浮高亮的时候会显示异常&#xff0c;并没有高亮合并后的整行&#xff0c;还是高亮子行。 高亮前&#xff1a; 高亮异常情况&#xff1a; 解决后&#xff1a; 解决方案&#xff1a; 一、思路&…

第6章 密码学和对称密钥算法

6.1 密码学基本知识 6.1.1 密码学的目标 安全从业者可借助密码系统实现4个基本目标&#xff1a;保密性、完整性、身份认证和不可否认性。 其中每个目标的实现都需要满足诸多设计要求&#xff0c;而且并非所有密码系统都是为达到所有4个目标而设计的。 下面的小节将详细讲解这…

我的剑,传给能挥舞它的人--量化书籍推荐!

这篇笔记介绍量化入门的参考书目。 前1/4叹为观止&#xff0c;再1/4勉强点赞&#xff0c;再1/4乏善可陈&#xff0c;最后1/4简直不忍卒读。这是我对某本名书的评价&#xff0c;希望你并不会将这句话还给我。“不会的”&#xff0c;我安慰自己。不是文章多好&#xff0c;但你们…

云卷云舒:【实战篇】对象存储迁移

云卷云舒&#xff1a;【实战篇】MySQL迁移-CSDN博客 1. 简介 对象存储与块存储、文件存储并列为云计算三大存储模型。提供海量存储空间服务&#xff0c;具备快速的数据存取性能、高可靠和数据安全性&#xff0c;通过标准的RESTful API接口和丰富的SDK包来提供服务&#xff0c…

基于SSM的校内信息服务发布系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

uniapp 微信小程序跳转至其他小程序

一、背景&#xff1a; 需要在目前的小程序中跳转到另一个小程序&#xff0c;跳转的目标小程序需要已经发布上线了 二、具体实现 使用uni.navigateToMiniProgram打开另一个小程序 官网指引&#x1f449;&#xff1a;uni.navigateToMiniProgram(OBJECT) | uni-app官网 <t…

RA8900CE汽车用c总线接口实时时钟模块

汽车用c总线接口实时时钟模块内置调频32.768 kHz晶体单元和DTCXO&#xff0c;高稳定性和电源切换。 接口类型我 2C-Bus接口(400kHz)界面电压范围2.5V ~ 5.5V温度补偿电压范围2.0V至5.5V计时电压范围1.6V ~ 5.5V可选时钟输出(32.768 kHz, 1024 Hz, 1 Hz)各种功能齐全的日历、报…

css3 transform:scale

transform:scale 语法&#xff1a;transform:scale(x,y); <html> <head><style>.box1 {display: inline-block;width: 200px;height: 200px;background-color: pink;}.box2 {display: inline-block;width: 200px;height: 200px;background-color: red;tran…

第85讲:MySQLDump与Binlog日志实现企业级数据备份恢复案例

文章目录 1.企业级数据备份恢复案例描述2.第一环节&#xff1a;周三凌晨进行数据全量备份3.第二环节&#xff1a;模拟周三凌晨备份完之后到下午3点前的业务操作4.第三环节&#xff1a;模拟数据库异常数据丢失导致平台无法使用5.第四环节&#xff1a;发布停服公告全员进入数据恢…

计算机组成原理 I/O方式

I/O 方式 I/O方式分类: 程序查询方式。由 CPU通过程序不断查询 /O 设备是否已做好准备&#xff0c;从而控制0 设备与主机交换信息程序中断方式。只在 I/0 设备准备就绪并向 CPU发出中断请求时才予以响应。DMA方式。主存和 I/O 设备之间有一条直接数据通路&#xff0c;当主存和…

什么是IT安全(Information Technology Security)?它的价值如何体现

文章目录 一、IT安全名词解释二、IT安全面临的威胁三、IT安全的类型3.1 网络安全3.2 系统安全3.3 应用安全3.4 数据安全3.5 用户安全3.6 物理安全3.7 安全管理 四、IT 安全和信息安全 ( InfoSec )之间有什么区别&#xff1f;IT安全信息安全&#xff08;InfoSec&#xff09; 五、…

湖南大学-计算机网路-2023期末考试【部分原题回忆】

前言 计算机网络第一门考&#xff0c;而且没考好&#xff0c;回忆起来的原题不多。 这门学科学的最认真&#xff0c;复习的最久&#xff0c;考的最差。 教材使用这本书&#xff1a; 简答题&#xff08;6*530分&#xff09; MTU和MSS分别是什么&#xff0c;联系是什么&#x…

内外网文件交换系统实用技巧揭秘:安全、效率、便捷一个不少

内外网文件交换系统是一种专门设计用于在企业内部网络&#xff08;内网&#xff09;与外部网络&#xff08;外网&#xff09;之间安全传输文件的技术解决方案。在企业环境中&#xff0c;出于安全考虑&#xff0c;内部网络通常与外部网络隔离&#xff0c;以防止未经授权的访问和…

Nacos 学习之系列文章

系列文章目录 目录 系列文章目录 文章目录 前言 一、Nacos是什么&#xff1f; 二、Nacos的主要功能 服务发现和服务健康监测 动态配置服务 动态 DNS 服务 三、Nacos 地图 四、Nacos 生态图 总结 前言 Nacos 帮助您更敏捷和容易地构建、交付和管理微服务平台。 Naco…

MATLAB根据数据拟合曲线

MATLAB根据数据拟合曲线 MATLAB根据数据拟合曲线视频观看 MATLAB根据数据拟合曲线 x1[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,6…

测试分类篇

小王学习录 测试分类按测试对象划分1. 界面测试2. 可靠性测试3. 容错性测试4. 文档测试5. 兼容性测试6. 易用性测试7. 安装卸载测试8. 安全测试9. 性能测试10. 内存泄露测试 按是否查看代码划分1. 黑盒测试2. 白盒测试3. 灰盒测试 按开发阶段分1. 单元测试2. 集成测试3. 系统测…

02. Eureka、Nacos注册中心及负载均衡原理

01小节中订单服务远程调用用户服务案例实现了跨服务请求&#xff0c;在微服务中一个服务可能是集群部署的&#xff0c;也就是一个服务有多个实例&#xff0c;但是我们在调用服务时需要指定具体的服务实例才能调用该服务&#xff0c;在集群模式下&#xff0c;服务地址应该写哪个…

【leetcode】力扣热门之回文链表【简单难度】

题目描述 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 用例 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true 输入&#xff1a;head [1,2] 输出&#xff1a;f…