数据库内核那些事|细说PolarDB优化器查询变换:IN-List变换

news2024/11/29 0:40:55

导读

数据库的查询优化器是整个系统的"大脑",一条SQL语句执行是否高效在不同的优化决策下可能会产生几个数量级的性能差异,因此优化器也是数据库系统中最为核心的组件和竞争力之一。阿里云瑶池旗下的云原生数据库PolarDB MySQL版作为领先的云原生数据库,希望能够应对广泛用户场景、承接各类用户负载,助力企业数据业务持续在线、数据价值不断放大,因此对优化器能力的打磨是必须要做的工作之一。

本系列将从PolarDB for MySQL的查询变换能力开始,介绍我们在这个优化器方向上逐步积累的一些工作。

*本篇为「PolarDB优化器查询变换」系列第四篇,前三篇内容分别解读了:

1. Join消除

2. 窗口函数

3. Join条件下推

引言

PolarDB MySQL作为一款HTAP数据库,在复杂SQL查询优化能力上做了很多深入工作。早期用户SQL都非常简单,MySQL单机能力也有限。随着业务数据越来越多,业务场景越来越复杂,迫切需要越来越强大的数据库来满足统计、报表需求。

PolarDB在并行能力、查询变换能力、优化器等方面都做了非常深入的工作,这些工作有一个总目标:让用户的复杂查询执行得越来越快。本篇文章将对PolarDB的IN-List变换进行深入阐述,从而让我们对PolarDB的查询改写能力有更感性的认知。下面是一个常见的慢SQL:in函数运算,里面的常量比较多。

select        sum(l_extendedprice) / 7.0 as avg_yearly
from
        lineitem
        where
            l_partkey in (
9628136,19958441,10528766,.......); #in list里面有上千个常量值。

SQL语句是常见的单表过滤查询,然后进行agg汇总,实际执行耗时比较长,执行比较慢的原因是IN-List里面有上千个常量值。

原生MySQL

原生的MySQL执行计划如下:

+---------------------------------------------------------------------------------------------------+
| EXPLAIN                                                                                           |
+---------------------------------------------------------------------------------------------------+
| -> Aggregate: sum(lineitem.L_EXTENDEDPRICE)
    -> Filter: (lineitem.L_PARTKEY in (9628136,19958441,10528766,....) (cost=60858714.81 rows=297355930)
        -> Table scan on lineitem  (cost=60858714.81 rows=594711859)
|
+---------------------------------------------------------------------------------------------------+

执行过程是线性scan lineitem 5.9亿条数据,逐条去判断是不是在IN-List里面,这个算子是Item_func_in,in集合元素个数比较多,我们使用10W常量值进行测试,这个算子做求值运算耗时较长,整体完成需要 375s。

具体看下Item_func_in代码执行逻辑:

  • 判断是否可以二分查找,如可以二分查找,将IN-List转成有序数组;
  • 如果产生了有序数组,则执行时优先尝试二分查找;
  • 否则,线性scan,逐一判断左表达式是否等于IN-List里面的item。

可以看到求值逻辑已经是教优的了,这个算子基本没有优化空间了。主要是外层循环次数太多,如果能减少外层的大loop,那么就能降低延时。

PolarDB

PolarDB解决问题的思路是对该SQL做查询变换, 把IN-List转变成一张物化表,加入join list,具体变换过程如下:

Step 1:转成in子查询,上述SQL改写为

select ... from lineitem where l_partkey in (...)
====>
select ... from lineitem where l_partkey in 
 (select dt._col_1 from (values (9628136),(19958441),...) dt)

Step 2:SubQuery Unnest-消除子查询

子查询已经是非相关的,通过SU技术,可以消除子查询,转化为semi-join。物化表经过去重,并且Join列非空,进而可以转化为inner-join。

SQL将继续改写为:

====>
select ... from lineitem, (values (9628136),(19958441),...) dt) where l_partkey = dt._col_1

通过这种变换能到得如下好处:

不用逐条去做filter,因为MySQL执行器是火山模型,增加了一个filter算子就增加了一层虚函数调用;

Join有join buffer,可以一个batch一个batch参与Join,这是转成join list的一个好处;

转成join list,join的优化非常多,如join order&access path,总能选到更优plan。

最后执行的plan如下:

+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN                                                                                                                                                                                                                                                                                                                                                                 |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Aggregate: sum(lineitem.L_EXTENDEDPRICE)
    -> Nested loop inner join
        -> Table scan on dt
            -> Materialize with deduplication
                -> scan on in-list: 100000 rows
        -> Index lookup on lineitem using LINEITEM_FK2 (L_PARTKEY=dt._col_1), with index condition: (lineitem.L_PARTKEY = dt._col_1)  (cost=7.34 rows=29)

物化表数据量少,作为外表,inner-join成功使用lineitem索引,只要扫10万条物化表记录,然后再使用LINEITEM_FK2索引进行连接,整条SQL执行下来只需要32s。

测试效果

PolarDB IN-List优化后在 TPCH 100G 数据集上比原生方式提升11.5倍,又因为PolarDB支持并行查询,32并行度模式下提升上百倍。

image.png

总结

原理上,PolarDB做完IN-List转换为Join-List后,能得到如下两方面的提升:

  • IN-List里面的常量都经过物化去重,基数可能会有不小的下降,这取决于重复值;
  • IN-List消去,变成了一张物化表,参与Join-List后,有更多access path选择,比如选择更好的index,更多的Join方式:hash join还是nest loop join。

细微之处见真功夫,做IN-List转换还要完成其他工作,如需要适配prepare statement协议、适配并行查询协议等,PolarDB在云数据库市场能做到特性遥遥领先,离不开背后工程师们坚持客户价值第一的初心,后续我们将介绍更多查询改写相关内容,敬请期待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365258.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

prometheus 黑盒监控

黑盒监控 “白盒监控” 是需要把对应的Exporter程序安装到被监控的目标主机上,从而实现对主机各种资源以及状态的数据采集工作 ”黑盒监控“ 是不需要把Exporter程序部署到被监控的目标主机上,比如全球的网络质量的稳定性,通常用ping操作&am…

在 Mac 上轻松安装和配置 JMeter

Apache JMeter 是一个开源的负载测试工具,可以用于测试静态和动态资源,确定服务器的性能和稳定性。在本文中,我们将讨论如何下载和安装 JMeter。 安装 Java(已安装 Java 的此步骤可跳过) 要安装 Java,请按…

基于SSM的停车管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

1-03C语言超基础语法

一、概述 为了更好的进行后续的课程,避免出现"老师,我还没学过的东西,你怎么直接用?"诸如此类疑问,本小节就诞生了。 实际上,整个第一个大章节的所有小节都是"C语言基础语法"&#x…

ORA-600 adg无法查询故障

再续前缘 ORA-600[12406]故障解决-CSDN博客 当你点背的时候,看似一个简单的case,总是会迎来反转 上次改完参数没两天,又出现了报错不同,但是现象相似的情况 这次是 ORA-600 [kksgaGetNoAlloc_Int0] 这次出现故障的范围更大&a…

XML技术分析05

一、DOM 使用DOM扫描器程序:DOM扫描器是一种非常通用的程序,它不需知道用户定制的XML标记的确切含义。DOMAPI具有某些能把任何数据存储到树形结构中的接口。扫描器具有一组实现了这些接口的类,可以实例化这些类的对象。 这些接口和类…

CAN协议层详细介绍

CAN物理层协议介绍-CSDN博客 目录 1. CAN的波特率及位同步 2. 位时序分解 3. CAN的报文种类及结构 3.1 报文的种类 3.2 数据帧的结构 3.2.1 仲裁段 3.2.2 RTR位(Remote Transmission Request Bit) 3.2.3 IDE位(Identifier Extension Bit) 3.2.3 SRR位(Substi…

K8S--安装MySQL8(单机)

原文网址:K8S--安装MySQL8(单机)-CSDN博客 简介 本文介绍K8S部署MySQL8(单机)的方法。 本文的目标 1.通过PV和PVC(hostPath方式)存储MySQL的数据 2.通过Deployment、Service部署MySQL8&…

【AI视野·今日NLP 自然语言处理论文速览 第七十期】Thu, 4 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Thu, 4 Jan 2024 Totally 29 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Multilingual Instruction Tuning With Just a Pinch of Multilinguality Authors Uri Shaham, Jonathan Herzi…

新手练习项目 5:简易计算器(C++)

名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder) 目录 一、效果图二、代码(带注释)三、说明 一、效果图 二、代码(带…

SPON世邦 IP网络对讲广播系统 多处文件上传漏洞复现

0x01 产品简介 SPON世邦IP网络对讲广播系统是一种先进的通信解决方案,旨在提供高效的网络对讲和广播功能。 0x02 漏洞概述 SPON世邦IP网络对讲广播系统 addscenedata.php、uploadjson.php、my_parser.php等接口处存在任意文件上传漏洞,未经身份验证的攻击者可利用此漏洞上…

尚硅谷大数据技术-数据湖Hudi视频教程-笔记01【概述、编译安装】

大数据新风口:Hudi数据湖(尚硅谷&Apache Hudi联合出品) B站直达:https://www.bilibili.com/video/BV1ue4y1i7na 尚硅谷数据湖Hudi视频教程百度网盘:https://pan.baidu.com/s/1NkPku5Pp-l0gfgoo63hR-Q?pwdyyds阿里…

flutter中枚举的使用

Dart 2.17 增加了对枚举成员变量的支持,推荐使用方式三 使用dart工具来运行代码,工具:https://dartpad.cn //方式一:未支持扩展枚举时 enum InOutOrderStatusEnum {approval,completed,cancel,rejected;int get statusCode {sw…

【C++】- 类和对象(构造函数!析构函数!拷贝构造函数!详解)

类和对象② 类的6个默认成员函数构造函数析构函数拷贝构造函数 类的6个默认成员函数 上一篇详细介绍了类。如果一个类中什么成员都没有,简称为空类。 那么空类中真的什么都没有吗? 并不是,当类在什么都不写时,编译器会自动生成…

126基于matlab的孪生支持向量机(Twin support vector machine,TWSVM)是SVM的一种变形算法

基于matlab的孪生支持向量机(Twin support vector machine,TWSVM)是SVM的一种变形算法。该采用WSVM进行二分类,程序已注释数据可更换自己的,程序已调通,可直接运行。 126matlabTWSVM模式识别 (xiaohongshu.com)

【AI视野·今日Robot 机器人论文速览 第七十期】Thu, 4 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Thu, 4 Jan 2024 Totally 17 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Many-Objective-Optimized Semi-Automated Robotic Disassembly Sequences Authors Takuya Kiyokawa, Kensuke Harada, Weiwei …

python 文件

open """ def open(file: FileDescriptorOrPath, //路径mode: OpenTextMode "r", //设置打开文件的模式 r 以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。 w 打开一个文件只用写入。如果该文件已存在则打开文件&#…

【项目管理】CMMI-风险与机会管理过程

1、文档结构 2、风险与机会概率 风险与机会概率指的是风险与机会实际发生的可能性。可以用自然语言术语来映射数字概率范围。下表列出了七段概率分级中自然语言术语和数字概率范围映射关系。注意,用来计算的概率值等于概率范围的中间值取整。有了映射表格的帮助&am…

w18认证崩溃之暴力破解4种攻击模式

一、实验环境 攻击工具:burpsuite2021.12 靶场:DVWA二、实验目的 演示burpsuite的4种攻击方式 三、实验步骤 1.搭建靶场,将dvwa的网站进行发布,本文采用phpstudy管理网站 2.在DVWA Security里设置安全级别,本文从low…