OpenMMlab导出CenterNet模型并用onnxruntime和tensorrt推理

news2025/1/10 23:41:12

导出onnx文件

直接使用脚本

import torch
import torch.nn.functional as F
from mmdet.apis import init_detector


config_file = './configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py'
checkpoint_file = '../checkpoints/centernet_resnet18_140e_coco_20210705_093630-bb5b3bf7.pth'
model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0          
torch.onnx.export(model, (torch.zeros(1, 3, 512, 512)), "centernet.onnx", opset_version=11)

导出的onnx结构如下:
在这里插入图片描述
修改脚本如下:

import torch
import torch.nn.functional as F
from mmdet.apis import init_detector


config_file = './configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py'
checkpoint_file = '../checkpoints/centernet_resnet18_140e_coco_20210705_093630-bb5b3bf7.pth'    


class CenterNet(torch.nn.Module):   
    def __init__(self):
        super().__init__()
        self.model = init_detector(config_file, checkpoint_file, device='cpu')
        
    def get_local_maximum(self, heat, kernel=3):
        pad = (kernel - 1) // 2
        hmax = F.max_pool2d(heat, kernel, stride=1, padding=pad)
        keep = (hmax == heat).float()
        return heat * keep
    
    def get_topk_from_heatmap(self, scores, k=20):
        batch, _, height, width = scores.size()
        topk_scores, topk_inds = torch.topk(scores.view(batch, -1), k)
        topk_clses = topk_inds // (height * width)
        topk_inds = topk_inds % (height * width)
        topk_ys = topk_inds // width
        topk_xs = (topk_inds % width).int().float()
        return topk_scores, topk_inds, topk_clses, topk_ys, topk_xs
    
    def gather_feat(self, feat, ind, mask=None):
        dim = feat.size(2)
        ind = ind.unsqueeze(2).repeat(1, 1, dim)
        feat = feat.gather(1, ind)
        if mask is not None:
            mask = mask.unsqueeze(2).expand_as(feat)
            feat = feat[mask]
            feat = feat.view(-1, dim)
        return feat

    def transpose_and_gather_feat(self, feat, ind):
        feat = feat.permute(0, 2, 3, 1).contiguous()
        feat = feat.view(feat.size(0), -1, feat.size(3))
        feat = self.gather_feat(feat, ind)
        return feat
        
    def _decode_heatmap(self, center_heatmap_pred, wh_pred, offset_pred, img_shape, k, kernel):
        height, width = center_heatmap_pred.shape[2:]
        inp_h, inp_w = img_shape

        center_heatmap_pred = self.get_local_maximum(center_heatmap_pred, kernel=kernel)

        *batch_dets, topk_ys, topk_xs = self.get_topk_from_heatmap(center_heatmap_pred, k=k)
        batch_scores, batch_index, batch_topk_labels = batch_dets

        wh = self.transpose_and_gather_feat(wh_pred, batch_index)
        offset = self.transpose_and_gather_feat(offset_pred, batch_index)
        topk_xs = topk_xs + offset[..., 0]
        topk_ys = topk_ys + offset[..., 1]
        tl_x = (topk_xs - wh[..., 0] / 2) * (inp_w / width)
        tl_y = (topk_ys - wh[..., 1] / 2) * (inp_h / height)
        br_x = (topk_xs + wh[..., 0] / 2) * (inp_w / width)
        br_y = (topk_ys + wh[..., 1] / 2) * (inp_h / height)

        batch_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=2)
        batch_bboxes = torch.cat((batch_bboxes, batch_scores[..., None]), dim=-1)
        return batch_bboxes, batch_topk_labels
        
    def forward(self, x):
        x = self.model.backbone(x)
        x = self.model.neck(x)
        center_heatmap_pred, wh_pred, offset_pred  = self.model.bbox_head(x)
        
        batch_det_bboxes, batch_labels = self._decode_heatmap(center_heatmap_pred[0], wh_pred[0], offset_pred[0], img_shape=(512,512), k=100, kernel=3)
        det_bboxes = batch_det_bboxes.view([-1, 5])
        bboxes = det_bboxes[..., :4]
        scores = det_bboxes[..., 4]
        labels = batch_labels.view(-1)
        return bboxes, scores, labels


model = CenterNet().eval()
input = torch.zeros(1, 3, 512, 512, device='cpu')
torch.onnx.export(model, input, "centernet.onnx", opset_version=11)

import onnx
from onnxsim import simplify
onnx_model = onnx.load("centernet.onnx")  # load onnx model
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, "centernet_sim.onnx")

导出的onnx结构如下:
在这里插入图片描述
则三个输出分别为boxes、scores、class_ids。

安装mmdeploy的话,可以通过下面脚本导出onnx模型:

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK


img = 'demo.JPEG'
work_dir = './work_dir/onnx/centernet'
save_file = './end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
model_cfg = 'mmdetection/configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py'
model_checkpoint = 'checkpoints/centernet_resnet18_140e_coco_20210705_093630-bb5b3bf7.pth'
device = 'cpu'

# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)

# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

onnx模型的结构如下:在这里插入图片描述

onnxruntime推理

手动导出的onnx模型使用onnxruntime推理:

import cv2
import numpy as np
import onnxruntime


class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别      
input_shape = (512, 512) 
score_threshold = 0.2  
nms_threshold = 0.5
confidence_threshold = 0.2   


def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


def filter_box(outputs): 
    outputs0, outputs1, outputs2 = outputs
    flag = outputs1 > confidence_threshold
    output0 = outputs0[flag].reshape(-1, 4)
    output1 = outputs1[flag].reshape(-1, 1)
    outputs2 = outputs2[flag].reshape(-1, 1)
    outputs = np.concatenate((output0, output1, outputs2), axis=1)
     
    boxes = []
    scores = []
    class_ids = []
    for i in range(len(outputs)):
        outputs[i][4] = output1[i]
        outputs[i][5] = outputs2[i]
        if outputs[i][4] > score_threshold:
            boxes.append(outputs[i][:6])
            scores.append(outputs[i][4])
            class_ids.append(outputs[i][5])
            
    boxes = np.array(boxes)
    scores = np.array(scores)
    indices = nms(boxes, scores, score_threshold, nms_threshold) 
    output = boxes[indices]
    return output


def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


def scale_boxes(boxes, shape):
    # Rescale boxes (xyxy) from input_shape to shape
    gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
    pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def draw(image, box_data):
    box_data = scale_boxes(box_data, image.shape)
    boxes = box_data[...,:4].astype(np.int32) 
    scores = box_data[...,4]
    classes = box_data[...,5].astype(np.int32)
   
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)


if __name__=="__main__":
    image = cv2.imread('bus.jpg')
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input[0,:] = (input[0,:] - 123.675) / 58.395   
    input[1,:] = (input[1,:] - 116.28) / 57.12
    input[2,:] = (input[2,:] - 103.53) / 57.375
    input = np.expand_dims(input, axis=0)
    
    onnx_session = onnxruntime.InferenceSession('centernet_sim.onnx', providers=['CPUExecutionProvider'])
        
    input_name = []
    for node in onnx_session.get_inputs():
        input_name.append(node.name)

    output_name = []
    for node in onnx_session.get_outputs():
        output_name.append(node.name)

    inputs = {}
    for name in input_name:
        inputs[name] = input
        
    outputs = onnx_session.run(None, inputs)
    
    boxes = filter_box(outputs)
    draw(image, boxes)
    cv2.imwrite('result.jpg', image)  

mmdeploy导出的onnx模型使用onnxruntime推理:

import cv2
import numpy as np
import onnxruntime


class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别       
input_shape = (512, 512)      
confidence_threshold = 0.2


def filter_box(outputs): #删除置信度小于confidence_threshold的BOX
    flag = outputs[0][..., 4] > confidence_threshold
    boxes = outputs[0][flag] 
    class_ids = outputs[1][flag].reshape(-1, 1) 
    output = np.concatenate((boxes, class_ids), axis=1)  
    return output


def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


def scale_boxes(input_shape, boxes, shape):
    # Rescale boxes (xyxy) from input_shape to shape
    gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
    pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding

    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def draw(image, box_data):
    box_data = scale_boxes(input_shape, box_data, image.shape)
    boxes = box_data[...,:4].astype(np.int32) 
    scores = box_data[...,4]
    classes = box_data[...,5].astype(np.int32)
   
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)


if __name__=="__main__":
    image = cv2.imread('bus.jpg')
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input[0,:] = (input[0,:] - 123.675) / 58.395   
    input[1,:] = (input[1,:] - 116.28) / 57.12
    input[2,:] = (input[2,:] - 103.53) / 57.375
    input = np.expand_dims(input, axis=0)
    
    onnx_session = onnxruntime.InferenceSession('../work_dir/onnx/centernet/end2end.onnx', providers=['CPUExecutionProvider'])
        
    input_name = []
    for node in onnx_session.get_inputs():
        input_name.append(node.name)

    output_name=[]
    for node in onnx_session.get_outputs():
        output_name.append(node.name)

    inputs = {}
    for name in input_name:
        inputs[name] = input
        
    outputs = onnx_session.run(None, inputs)
    
    boxes = filter_box(outputs)
    draw(image, boxes)
    cv2.imwrite('result.jpg', image)

直接使用mmdeploy的api推理:

from mmdeploy.apis import inference_model


model_cfg = 'mmdetection/configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py'
deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
img = 'mmdetection/demo/demo.jpg'
backend_files = ['work_dir/onnx/centernet/end2end.onnx']
device = 'cpu'

result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
print(result)

或者

from mmdeploy_runtime import Detector
import cv2

# 读取图片
img = cv2.imread('mmdetection/demo/demo.jpg')

# 创建检测器
detector = Detector(model_path='work_dir/onnx/centernet', device_name='cpu')

# 执行推理
bboxes, labels, _ = detector(img)
# 使用阈值过滤推理结果,并绘制到原图中
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):
  [left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
  if score < 0.3:
      continue
  cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))
cv2.imwrite('output_detection.png', img)

导出engine文件

方法一:通过trtexec转换onnx文件,LZ的版本是TensorRT-8.2.1.8。

./trtexec.exe --onnx=centernet.onnx --saveEngine=centernet.engine --workspace=20480

方法二:通过mmdeploy导出engine文件。

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.tensorrt.onnx2tensorrt import onnx2tensorrt
from mmdeploy.backend.sdk.export_info import export2SDK
import os


img = 'demo.JPEG'
work_dir = './work_dir/trt/centernet'
save_file = './end2end.onnx'
deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py'
model_cfg = 'mmdetection/configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py'
model_checkpoint = 'checkpoints/centernet_resnet18_140e_coco_20210705_093630-bb5b3bf7.pth'
device = 'cuda'

# 1. convert model to IR(onnx)
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)

# 2. convert IR to tensorrt
onnx_model = os.path.join(work_dir, save_file)
save_file = 'end2end.engine'
model_id = 0
device = 'cuda'
onnx2tensorrt(work_dir, save_file, model_id, deploy_cfg, onnx_model, device)

# 3. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

tensorrt推理

trtexec导出的模型使用tensorrt推理:

import cv2
import numpy as np
import tensorrt as trt
import pycuda.autoinit 
import pycuda.driver as cuda  


class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别      
input_shape = (512, 512) 
score_threshold = 0.2  
nms_threshold = 0.5
confidence_threshold = 0.2   


def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


def filter_box(outputs): 
    outputs0, outputs1, outputs2 = outputs
    flag = outputs1 > confidence_threshold
    output0 = outputs0[flag].reshape(-1, 4)
    output1 = outputs1[flag].reshape(-1, 1)
    outputs2 = outputs2[flag].reshape(-1, 1)
    outputs = np.concatenate((output0, output1, outputs2), axis=1)
     
    boxes = []
    scores = []
    class_ids = []
    for i in range(len(outputs)):
        outputs[i][4] = output1[i]
        outputs[i][5] = outputs2[i]
        if outputs[i][4] > score_threshold:
            boxes.append(outputs[i][:6])
            scores.append(outputs[i][4])
            class_ids.append(outputs[i][5])
            
    boxes = np.array(boxes)
    scores = np.array(scores)
    indices = nms(boxes, scores, score_threshold, nms_threshold) 
    output = boxes[indices]
    return output


def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


def scale_boxes(boxes, shape):
    # Rescale boxes (xyxy) from input_shape to shape
    gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
    pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def draw(image, box_data):
    box_data = scale_boxes(box_data, image.shape)
    boxes = box_data[...,:4].astype(np.int32) 
    scores = box_data[...,4]
    classes = box_data[...,5].astype(np.int32)
   
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)

        
if __name__=="__main__":
    logger = trt.Logger(trt.Logger.WARNING)
    with open("centernet.engine", "rb") as f, trt.Runtime(logger) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    context = engine.create_execution_context()
    h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)
    h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)
    h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)
    h_output2 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(3)), dtype=np.float32)
    d_input = cuda.mem_alloc(h_input.nbytes)
    d_output0 = cuda.mem_alloc(h_output0.nbytes)
    d_output1 = cuda.mem_alloc(h_output1.nbytes)
    d_output2 = cuda.mem_alloc(h_output2.nbytes)
    stream = cuda.Stream()
    
    image = cv2.imread('bus.jpg')
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input[0,:] = (input[0,:] - 123.675) / 58.395   
    input[1,:] = (input[1,:] - 116.28) / 57.12
    input[2,:] = (input[2,:] - 103.53) / 57.375
    input = np.expand_dims(input, axis=0)  
    np.copyto(h_input, input.ravel())

    with engine.create_execution_context() as context:
        cuda.memcpy_htod_async(d_input, h_input, stream)
        context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1), int(d_output2)], stream_handle=stream.handle)
        cuda.memcpy_dtoh_async(h_output0, d_output0, stream)
        cuda.memcpy_dtoh_async(h_output1, d_output1, stream)
        cuda.memcpy_dtoh_async(h_output2, d_output2, stream)
        stream.synchronize()  
        h_output = []
        h_output.append(h_output0.reshape(100, 4))
        h_output.append(h_output1.reshape(100))
        h_output.append(h_output2.reshape(100, 1).astype(np.int32))
        boxes = filter_box(h_output)
        draw(image, boxes)
        cv2.imwrite('result.jpg', image)

使用mmdeploy的api推理:

from mmdeploy.apis import inference_model

model_cfg = 'mmdetection/configs/centernet/centernet_r18_8xb16-crop512-140e_coco.py'
deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-300x300-512x512.py'
img = 'mmdetection/demo/demo.jpg'
backend_files = ['work_dir/trt/centernet/end2end.engine']
device = 'cuda'

result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
print(result)

或者

from mmdeploy_runtime import Detector
import cv2

# 读取图片
img = cv2.imread('mmdetection/demo/demo.jpg')

# 创建检测器
detector = Detector(model_path='work_dir/trt/centernet', device_name='cuda')

# 执行推理
bboxes, labels, _ = detector(img)
# 使用阈值过滤推理结果,并绘制到原图中
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):
  [left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
  if score < 0.3:
      continue
  cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))
cv2.imwrite('output_detection.png', img)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363891.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图 【大数据进阶第三阶段之Datax学习笔记】使用…

DNS安全与访问控制

一、DNS安全 1、DNSSEC原理 DNSSEC依靠数字签名保证DNS应答报文的真实性和完整性。权威域名服务器用自己的私有密钥对资源记录&#xff08;Resource Record, RR&#xff09;进行签名&#xff0c;解析服务器用权威服务器的公开密钥对收到的应答信息进行验证。如果验证失败&…

5年经验之谈 —— 探索自动化测试用例设计粒度!

自动化测试用例的粒度指的是测试用例的细致程度&#xff0c;即每个测试用例检查的功能点的数量和范围。 通常&#xff0c;根据测试用例的粒度&#xff0c;可以被分为3种不同的层次&#xff0c;从更低层次的细粒度到更高层次的粗粒度。 第一种&#xff1a;单元测试 - 细粒度 单…

【IC设计】移位寄存器

目录 理论讲解背景介绍什么是移位寄存器按工作模式分类verilog语法注意事项 设计实例循环移位寄存器算术双向移位寄存器5位线性反馈移位寄存器伪随机码发生器3位线性反馈移位寄存器32位线性反馈移位寄存器串行移位寄存器&#xff08;打4拍&#xff09;双向移位寄存器&#xff1…

设置输入法默认为英文

1、进入语言首选项 2、添加首选的语言&#xff0c;选英文 3、 选择始终默认使用的输入法 4、选择默认语言 5、输入语言热键

LeetCode刷题:面试题 02.01. 移除重复节点

题目&#xff1a; 是否独立完成&#xff1a;算是&#xff0c;但是使用自己的办法时间复杂度会超标 解题思路&#xff1a; 1.双循环嵌套&#xff0c;定义快慢节点&#xff0c;双层嵌套循环&#xff0c;如果值一样则剔除&#xff0c;但是时间复杂度为O&#xff08;n&#xff09;…

数据交互系列:认识 cookie

cookie的原理 http本身是一个无状态的请求&#xff0c;cookie最初的原始目的是为了维持状态而产生的。在首次访问网站时&#xff0c;浏览发送请求中并未携带cookie&#xff0c;即发送无状态请求服务器接受请求之后会在请求上的respond header上加入cookie相关信息并返回给浏览…

【计算机组成原理】通过带符号整数的减法运算中加法器的溢出标志 OF 和符号标志 SF 对两个带符号整数的大小进行比较

对于带符号整数的减法运算&#xff0c;能否直接根据 CF 的值对两个带符号整数的大小进行比较&#xff1f; 对于带符号整数的减法运算&#xff0c;不能直接根据CF&#xff08;进/借位标志&#xff09;的值对两个带符号整数的大小进行比较。 CF标志位在带符号整数运算中主要用于…

使用Python+selenium3.0实现第一个自动化测试脚本

这篇文章主要介绍了使用Pythonselenium实现第一个自动化测试脚本&#xff0c;文中通过示例代码介绍的非常详细&#xff0c;对大家的学习或者工作具有一定的参考学习价值&#xff0c;需要的朋友们下面随着小编来一起学习学习吧 最近在学web自动化&#xff0c;记录一下学习过程。…

冬天夺去的清爽,可爱,春天都会还给你

这款外套上身可太时尚好看了 春天日常穿着或者出行游玩 应对早晚温差&#xff0c;兼具时尚和温度两不误 干净率性闲适的洒脱范整件衣服干净不失细节 下摆有橡筋收紧更加保暖了工艺方面也毫不逊色&#xff0c;防水拉链 四合扣、猪鼻扣一应俱全简直就是一件实用与时尚并存的…

Spring Boot实现数据加密脱敏:注解 + 反射 + AOP

文章目录 1. 引言2. 数据加密和脱敏的需求3. Spring Boot项目初始化4. 敏感数据加密注解设计5. 实现加密和脱敏的工具类6. 实体类和加密脱敏注解的使用7. 利用AOP实现加密和脱敏8. 完善AOP切面9. 测试10. 拓展功能与未来展望10.1 加密算法的选择10.2 动态注解配置 11. 总结 &am…

ReentrantLock底层原理学习一

J.U.C 简介 Java.util.concurrent 是在并发编程中比较常用的工具类&#xff0c;里面包含很多用来在并发场景中使用的组件。比如线程池、阻塞队列、计时器、同步器、并发集合等等。并发包的作者是大名鼎鼎的 Doug Lea。我们在接下来的课程中&#xff0c;回去剖析一些经典的比较…

【Docker基础三】Docker安装Redis

下载镜像 根据自己需要下载指定版本镜像&#xff0c;所有版本看这&#xff1a;Index of /releases/ (redis.io) 或 https://hub.docker.com/_/redis # 下载指定版本redis镜像 docker pull redis:7.2.0 # 查看镜像是否下载成功 docker images 创建挂载目录 # 宿主机上创建挂…

AQS 抽象队列同步器

AQS AQS &#xff08;抽象队列同步器&#xff09;&#xff1a; AbstractQueuedSynchronizer 是什么 来自jdk1.5&#xff0c;是用来实现锁或者其他同步器组件的公共基础部分的抽象实现&#xff0c;是重量级基础框架以及JUC的基石&#xff0c;主要用于解决锁分配给谁的问题整体…

vue2中vuex详细使用

1.安装 说明&#xff1a;也就是版本号&#xff0c;一般vue2安装vuex3。 npm i vuex3.6.2 2.搭建架子 执行流程如下&#xff1a; 初始化状态&#xff1a;在state对象中定义了一个名为message的属性&#xff0c;并将其初始值设置为"启动"。 定义变更函数&#xff08…

【算法专题】FloodFill 算法

FloodFill 算法 1. 图像渲染 题目链接 -> Leetcode -773.图像渲染 Leetcode -773.图像渲染 题目&#xff1a;有一幅以 m x n 的二维整数数组表示的图画 image &#xff0c;其中 image[i][j] 表示该图画的像素值大小。 你也被给予三个整数 sr, sc 和 newColor 。你应该从…

jumpServer-02-安装与配置

jumpServer-02-安装与配置 文章目录 jumpServer-02-安装与配置一、什么是jumpServer&#xff1f;二、jumpServer安装配置①&#xff1a;初始化配置01&#xff1a;Linux服务器准备02&#xff1a;环境准备&#xff0c;关闭防火墙03: 配置yum源04&#xff1a;安装系统初始化所需的…

Python 入门练习

练习1&#xff1a;打印“hello world” print(hello world) 练习2&#xff1a;用户输入一个三位自然数&#xff0c;计算并输出其百位&#xff0c;十位和个位上的数字。 x input(请输入一个三位自然数&#xff1a;) print(*map(int,x)) 运行结果&#xff1a; 练习3&#x…

学习JavaEE的日子 day10 一维数组的深入,二维数组

day10 1.eclipse的使用 Eclipse是一款功能强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;主要用于开发Java应用程序。 1.项目&#xff08;Project&#xff09;&#xff1a;项目是为满足特定需求而创建的代码文件集合。一个工作区可以包含多个项目&#xff0c;而您…

超维空间M1无人机使用说明书——01、ROS机载电脑使用说明——远程连接

引言&#xff1a;远程连接通常采用两种方式&#xff0c;一种是通过可视化软件&#xff0c;如VNC、Nomachine等&#xff0c;另外一种是使用SSH。各有优缺点&#xff0c;两种远程登录方式的优缺点做一个简单的对比&#xff1a; 1、SSH优缺点 优点:1、消耗网络资源 2、运行稳定 …